
Approximation of (k, t)-robust equilibria

Tudor Dan Mihoc, Noémi Gaskó, Rodica Ioana Lung, Mihai Suciu

Babeş-Bolyai University, Cluj-Napoca, Romania

Abstract

Game theory models strategic and conflicting situations offering sev-
eral solution concepts known as game equilibria, among which probably
the most popular one is the Nash equilibrium. A less known equilibrium,
called (k, t)-robust, has recently been used in the context of distributed
computing. The (k, t)-robust equilibrium combines the concepts of k-
resiliency and t-immunity: a strategy profile is k-resilient if there is no
coalition of k players that can benefit from improving their payoffs by
collective deviation, and it is t-immune if any action of any t players does
not decrease the payoffs of the others. A strategy profile is (k, t)-robust if
it is both k-resilient and t-immune. In this paper an evolutionary method
of approximating (k, t)-robust equilibria is proposed and tested by means
of numerical experiments on a benchmark constructed from a game that
studies node behavior in a distributed system.

Keywords: game theory; distributed systems; (k, t)-robust equilibria

1 Introduction

The popularity of solution concepts offered by game theory depends on their
practical properties and applicability, which is directly related to their com-
putability. One of the most accepted postulates in game theory is related to the
players rationality, interpretable also as selfishness, as each player is pursuing
its own interests. The Nash equilibrium [15], which relies on this principle, is a
state of the game such that all players reach the highest value for their utility
function that can not be improved by unilateral deviation. However the Nash
equilibrium cannot model every possible situation: in real life players may not
act rational, they often (apparently) cooperate and may adopt unselfish behav-
ior, creating a need for other concepts and leading to several Nash equilibrium
refinements and other solution concepts.

One of the most appealing Nash refinement is the strong equilibrium [6] that
considers combinations of strategies from which no group of players can prof-
itably deviate and introducing the idea of resiliency. In [3] a state of the game
is described to be k-resilient if the members of no group of k players can all do

1

better by deviating from their strategies. On the other hand, the t-immune equi-
librium models the situation in which fault arbitrary (or coordinated) behavior
can occur to up to t players in a game without negatively affecting the rest of
non-deviating players [8]. Combining these two concepts - resilience and immu-
nity - leads to the (k, t)-robust equilibrium, that allows the study of different
systems where some of the components adopt a Byzantine comportment [11],
in order to determine their stability or even to predict their outcomes [1, 4, 10].
Thus, the (k, t)-robust equilibrium is appealing when dealing with large systems
in which irrational behavior of some elements is expected, or for over simplified
games that ignore some components in player’s utility functions.

In particular, (k, t)-robust equilibria have been studied related to distribut-
ing computing problems [2, 3], cryptography [4], and concurrent games [7]. How-
ever, practical approaches are limited by two important factors: (i) the existence
of (k, t)-robust equilibria is not guaranteed by theoretical results, and (ii) the
lack of methods of computing it renders it useless even in situations in which it
may exist.

In distributed computing, a problem approached with game theoretic tools
is the coordination of a set of concurrent processes in spite of the faulty behavior
of some of them, with the (k, t)-robust equilibrium a suitable solution concept,
as the formulation in terms of Nash equilibria raised some questions about
the accuracy of the model as well as the possibility to compute the solution
[5]. While it is generally agreed that the (k, t)-robust equilibrium models more
accurate this problem [2], the problem of its computability is still open.

In this paper we present a computational intelligence based method of ap-
proximating (k, t)-robust equilibria by using a differential evolution algorithm
with fitness assignment based on non-domination with respect to a binary re-
lation between strategy profiles. A simple steady state method is also used to
support the statement that the search is actually guided by the relation between
strategies. One of the challenges of presenting this approach comes from the lack
of other methods of computing this equilibria type and that of actual bench-
marks for testing it. In this context, to illustrate possible results, we constructed
a game based on the distributed computing systems model presented in [14] by
generalizing it to n players and using it as a benchmark for our tests. Each
solution provided by our method is validated through a procedure that checks
by enumerating all possible deviations if it is indeed a (k, t)-robust equilibrium.

2 (k,t)-robust equilibria

We consider a game in normal form Γ = (N,S, U), where N = {1, ..., n} is the
set of players, S = S1 × ... × Sn is the set of strategy profiles of the game,
and U = (u1, ..., un) are the players’ utility functions, ui : S → R. A state of
the game is a strategy profile represented by a vector s ∈ S, s = (s1, ..., sn)
that contains the players options (si ∈ Si). If X ⊂ N and p, q ∈ S, (p−X , qX)
denotes the strategy profile in which players from X play their strategies from q
and those from N \X their strategies from p. We denote by |K| the cardinality

2

of set K.
To describe the (k, t)-robust equilibrium, we will use the k-resilient and t-

immune equilibrium concepts.

Definition 1 [7] A strategy s∗ is a k-resilient equilibrium, if for all K ⊆ N ,
with |K| = k,

ui(s
∗
K , s

∗
−K) ≥ ui(sK , s∗−K),

for all sK ∈ SK , and for all i ∈ K.

Definition 2 [7] A strategy s∗ ∈ S is t-immune if for all T ⊆ N with |T | = t,
all sT ∈ ST , and all i 6∈ T we have:

ui(s
∗
−T , sT) ≥ ui(s∗).

By combining these two concepts, the (k, t)-robust equilibrium captures the
situation of the game in which no coalition of k players is affected by the actions
of any other t players, i.e. no matter what any t players choose, there will be
k players who will have no incentive to deviate, as any deviation will decrease
their payoff.

Definition 3 [7] A strategy s∗ ∈ S is (k, t)-robust if for all K,T ⊆ N , such
that K ∩ T = ∅, |K| = k, |T | = t, for all xT ∈ ST , for all yK ∈ SK , for all
i ∈ K:

ui(s
∗
−T , xT) ≥ ui(s∗−(K∪T), yK , xT).

We remark that the (1, 0)-robust equilibrium is a Nash equilibrium of a game
[2].

Remark 1 Other resources ([3, 2]) indicate a variation of the definitions pre-
sented above, in which the size of coalition K can be |K| ≤ k and the same with
T , i.e. |T | ≤ t. From our perspective, considering coalitions of size less then k
and t respectively poses a different problem that remains to be studied in future
work.

3 Approximation of (k,t)-robust equilibria

A general framework for computing game equilibria can be constructed by in-
troducing generative relations that, by allowing the comparison of two strategy
profiles, can be used to guide the search of an heuristic methods towards a
certain equilibrium type.

3

Generative relation for (k, t)-robust equilibrium A generative relation
that characterizes an equilibrium concept is a relation τ ⊂ S × S that has the
property that the set of non-dominated solutions with respect to τ is equal to
the set of equilibria of the game. A strategy profile s ∈ S is non-dominated
with respect to relation τ if there does not exist a q ∈ S such that (q, s) ∈ τ .
The main purpose in defining such a relation is to use it for fitness assignment
within an evolutionary algorithm in order to guide the search towards non-
dominated solutions and thus compute game equilibria. A generative relation
for characterizing Nash equilibria of the game can be found in [12]. In what
follows we propose a generative relation for (k, t)-robust equilibria.

Let p and q two profile strategies from S, and K ⊂ N,T ⊂ N with K∩T = ∅.
We denote by:

rK,T (p, q) = |{i ∈ K|ui(p−T , qT) < ui(p−(K∪T), q(K∪T))}

the number of players from K that can improve their payoffs by deviating from
p to q, if all players in T deviate from p to q. If p is a (k, t)-robust equilibrium,
then rK,T (p, q) = 0 for any K,T ⊂ N,K∩T = ∅ and any q ∈ S. Then we write:

r(p, q) =
∑
K⊂N
|K|=k

∑
T⊂N

K∩T=∅
|T |=t

rK,T (p, q)

It is also obvious that if p is a (k, t)-robust equilibrium then r(p, q) = 0 for any
q ∈ S.

Definition 4 We say the strategy p is better than strategy q with respect
to (k, t)-robust equilibrium, and we write p ≺kt q, iff:

r(p, q) < r(q, p).

Thus, strategy p is considered better than q if less players from any subset
K of size k can improve their payoff by deviating from p to q when all players
in any T of size t deviate from p to q than vice-versa.

Definition 5 The strategy profile s∗ ∈ S is called (k, t) non-dominated, or
non-dominated with respect to the relation ≺kt, iff @s ∈ S, s 6= s∗ such that

s ≺kt s
∗.

We consider ≺kt as a potential generative relation of (k, t)-robust equilib-
rium, i.e. the set of non-dominated strategies with respect to ≺kt approximates
the (k, t)-robust equilibria. The proof that ≺kt is a generative relation is beyond
the scope of this paper. In what follows we will use it to compute non-dominated
solutions with respect to ≺kt and further check (by using the definition and
enumerating all possible coalitions and situation) if the obtained solutions are
indeed (k, t)-robust.

4

Algorithm 1 kt-CrDE

1: Randomly generate initial population P0 of strategies;
2: while (not termination condition) do
3: for each l = {1, ..., population size} do
4: create offspring O[l] from parent l;
5: if O[l] (k,t) dominates the most similar parent j then
6: O[l] replaces parent j;
7: end if
8: end for
9: end while

3.1 Methods

As underlying algorithms we have used two methods: the Crowding based Dif-
ferential Evolution (CrDE) [13], that has been used to compute Nash equilibria,
was adapted to compute (k, t)-robust nondominated solutions by replacing the
Nash ascendancy relation with relation ≺kt; and a simple steady state evolu-
tionary algorithm.

CrDE [16] is a method designed to compute multiple equilibria in one run
that was already tested of multiple game settings, the algorithm is outlined in
1. CrDE uses a DE/rand/1/exp scheme with the modification that an offspring
replaces the closest (using Euclidean distance) if it is better than it with respect
to the searched equilibrium (algorithm 2).

Algorithm 2 CrDE - the DE/rand/1/exp scheme

Create offspring O[l] from parent P [l]

1: O[l] = P [l]
2: randomly select parents P [i1], P [i2], P [i3], where i1 6= i2 6= i3 6= i
3: n = U(0, dim)
4: for j = 0; j < dim ∧ U(0, 1) < pc; j = j + 1 do
5: O[l][n] = P [i1][n] + F ∗ (P [i2][n]− P [i3][n])
6: n = (n+ 1) mod dim
7: end for

The steady state evolutionary algorithm (StEA) is a simple algorithm used
to show that (k, t)-robust equilibria can be computed with almost any method
by using the ≺kt relation and consequently that CrDE is not the only method
that can be adapted in this manner. StEA evolves a population of strategy pro-
files (of length n)represented as binary arrays and randomly generated at the
beginning of the search. We consider a one point crossover and strong mutation
operators. Each iteration three individuals from the population are selected
randomly, compared to each other and are sorted with respect to the ≺kt gen-
erative relation. Crossover is applied to the best two of them and one offspring
is selected at random. We apply to the resulting individual the mutation op-
erator. If the resulting offspring dominates the third individual, it will replace

5

it in the original population, and if not the population will remain unchanged.
We repeat this until a predefined number of iterations is reached in order to
obtain a final population of profile strategies. The algorithm reports the set of
non-dominated individuals with respect to ≺kt in the final population.

4 A distributed computing game

Modeling and solving games with many players/agents having different goals
and/or under uncertainty represent some common traits of game theory and
distributed computing. Thus, problems from the distributed computing field,
such as Internet routing, security, resource allocation, and fault tolerance can be
tackled by game theory [9]. In most cases, in order to better model the system,
solutions of the game must take into account groups or coalitions of players and
be robust to the deviation of non faulty/byzantine players.

In this paper we consider the game in [14] that constructs a model for nodes
behavior in a distributed computing system (grid computing) with two nodes
and generalize it to n players as a non-cooperative game in normal form Γ =
(N,S, U). The players i ∈ {1, ..., n} are the grid’s nodes and form the set N .
Each player can Cooperate (c-strategy) or can refuse taking tasks from the other
nodes (Defect, d-strategy). The time needed by a node to complete a task can
be divided in two components: a serial time, with duration ai and a parallel
time bi, respectively.

A central authority rewards the nodes that are willing to cooperate - quan-
tified in the utility functions with mc - and will give a bonus of mt to the nodes
that reduce their computing costs. The players utility functions are:

6

Ui =

−
(
ai + p1i

)
, if |C| = 0

−
(
ai + p2i

)
+mc, if |C| = |N | and p2i >= bi

−
(
ai + p2i

)
+mt +mc, if |C| = |N | and p2i < bi

−
(
ai + p3i

)
+mt, if |C| < |N | and |C| 6= |0|

and p3i < bi and i ∈ D

−
(
ai + p3i

)
, if |C| < |N | and |C| 6= |0|

and p3i = bi and i ∈ D

−
(
ai + p4i

)
+mc, if |C| < |N | and |C| 6= |0|

and i ∈ C and p4i >= bi

−
(
ai + p4i

)
+mt +mc, if |C| < |N | and |C| 6= |0|

and i ∈ C and p4i < bi

(1)

where:

p1i = bi, p
2
i =

n∑
j=1

bj
|N |

, p3i =
bi

|C|+ 1
,

p4i =
∑
j∈C

bj
|C|

+
∑
j∈D

bj
|C|+ 1

.

If n = 2, mc = 0, and mt = m, game Γ is the same with the one proposed
in [14].

5 Numerical experiments

To validate this approach to detecting (k, t)-robust equilibria both algorithms
described above were tested on the distributed computer game.

Experimental set-up Game Γ was considered with 2, 5 and 10 players and
different values of k and t. For the numerical experiments, we have used the
following parameters ai = 1, bi = 2,∀i ∈ N , and mc,mt ∈ {0, 1, 2, 3}. The
results for this game may allow a decision maker estimate for different mc and
mt the chances to achieve a system immune to random defections of some of
the grid’s nodes.

Parameters used by both methods are standard and were not fine tuned for
this problem. There was no special effort involved in designing and adapting

7

Figure 1: Results obtained by the two methods for 2, 5, and 10 players and
different (k, t) settings. A red square indicates that the corresponding (k, t)-
robust strategy is for all players to defect; a green square indicates that the
robust strategy is cooperation for all players. A yellow square indicates multiple
solutions; a square divided in two represents two strategy profiles (all cooperate
and all defect). A circle indicates that only CrDE detected that particular
solution; a triangle that only StEA reported that solution; a gray square marks
no convergence.

8

the methods for computing the (k, t)-robust equilibria other than using the non-
dominated selection based on relation ≺kt.

The parameters for the CrDE algorithm are: CF = 50, F = 0.5 and
Pc = 0.9, with a population of 50 strategies and 500 generations. StEA uses
a population of 30 individuals. For 2 and 5 players the maxim number of iter-
ations was 500, and for the game with 10 players 1900 iterations, respectively.
The crossover probability is 0.80 and the mutation rate is 0.04. For each game
setting both methods were run 10 independent times.

Results and discussion Results are presented as color matrices representing
obtained (k, t)-robust strategies reported by the two methods in Figure 1. For
each (k, t) pair the matrix represents results obtained for different mc and mt

values. Detected solutions were validated using the definition of (k, t)-robust
equilibria (definition 3) showing that the generative relation can be used for
fitness assignment within evolutionary algorithms to detect this equilibrium
type.

As depicted in the Figure 1 both algorithms guided by the generative rela-
tion detected almost the same solutions, with the remark that CrDE performed
much better then StEA in terms of number of detected equilibria (as expected
considering that it was designed to compute multiple solutions). However, for
small number of players both methods were capable to compute multiple equi-
libria.

There were several cases where the two algorithms detected completely dif-
ferent solutions that were all (k, t)-robust; the difference might be caused by
specific characteristics of each method.

For this particular game, having a tool that allows these equilibria to be
detected, could be very practical. For example is important in a grid of 5 units
to know that a specific configuration where 3 units play as a supervisor requests
is stable even if the 2 others do as they like ((3, 2)-robust) – see for example the
5 players table with mc = 2 and mt = 1 from the Figure 1: a stable configuration
is for all to share tasks, otherwise the players will have the tendency to deviate
in order to secure their gains, even if the new payoffs would not be as high as
the current configuration.

6 Conclusions

The aim of this paper was to propose a computational tool to allows users
to gain an insight of the phenomena taking place in complex systems - like
distributed computing - by using a less known equilibrium concept, the (k, t)-
robust equilibrium.

As many other equilibria concepts, the (k, t)-robust equilibrium ”suffers”
from limited applicability due to the lack of practical methods to compute
it. Our approach to approximate (k, t)-robust equilibria, based on a genera-
tive relation and using a differential evolution algorithm, was tested on a game
constructed from a distributed computing problem. The knowledge offered by

9

(k, t)-robust equilibria can be used also as a learning mechanism for players
that can form coalitions of k players choosing the (k, t)-robust strategy and be
safe from the deviation of t players (which is the t immune strategy). Further
investigations are necessary to assess the possibilities of computing and using
this equilibrium concept in practical, real-world applications.

Acknowledgement

This work was supported by a grant of the Romanian National Authority for
Scientific Research and Innovation, CNCS - UEFISCDI, project number PN-II-
RU-TE-2014-4-2560.

References

[1] I. Abraham. On Implementing Robust and Resilient Mediators. pages 1–3,
2007.

[2] I. Abraham, L. Alvisi, and J. Y. Halpern. Distributed computing meets
game theory. ACM SIGACT News, 42(2):69, 2011.

[3] I. Abraham, D. Dolev, R. Gonen, and J. Halpern. Distributed comput-
ing meets game theory: robust mechanisms for rational secret sharing and
multiparty computation. Proceedings of the twenty-fifth annual ACM sym-
posium on Principles of distributed computing, pages 53–62, 2006.

[4] I. Abraham, D. Dolev, and J. Y. Halpern. Lower bounds on implementing
robust and resilient mediators, volume 4948 LNCS. 2008.

[5] J. Aspnes, C. Busch, S. Dolev, P. Fatourou, C. Georgiou, and A. A. Shvarts-
man. Eight open problems in distributed computing. 2006.

[6] R. J. Aumann. Acceptable points in general cooperative n-person games. In
R. D. Luce and A. W. Tucker, editors, Contribution to the theory of game
IV, Annals of Mathematical Study 40, pages 287–324. University Press,
1959.

[7] R. Brenguier. Robust Equilibria in Concurrent Games. page 17, nov 2016.

[8] N. Gaskó, M. Suciu, R. I. Lung, T. Mihoc, and D. Dumitrescu. Players
with unexpected behavior: t-immune strategies. An evolutionary approach.
Studia Universitatis Babes-Bolyai, Informatica, 58(2), 2013.

[9] J. Y. Halpern. A computer scientist looks at game theory. Games and
Economic Behavior, 45(1):114 – 131, 2003. First World Congress of the
Game Theory Society.

10

[10] J. Y. Halpern. Beyond nash equilibrium: Solution concepts for the 21st
century. Proceedings of the twenty-seventh ACM symposium on Principles
of distributed computing (PODC ’08), pages 1–9, 2008.

[11] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals Problem.
ACM Transactions on Programming Languages and Systems, 4(3):382–401,
1982.

[12] R. I. Lung and D. Dumitrescu. Computing nash equilibria by means of evo-
lutionary computation. Int. J. of Computers, Communications & Control,
6:364–368, 2008.

[13] R. I. Lung, T. D. Mihoc, and D. Dumitrescu. Nash equilibria detection
for multi-player games. In Evolutionary Computation (CEC), 2010 IEEE
Congress on, pages 1–5. IEEE, 2010.

[14] I. Mishkovski, S. Filiposka, D. Trajanov, A. Grnarov, and L. Ko-
carev. Using Game Theory to Analyze Distributed Computing Systems.
2008.Telfor.Rs, (November 2015), 2008.

[15] J. F. Nash. Non-cooperative games. Annals of Mathematics, 54:286–295,
1951.

[16] R. Thomsen. Multimodal optimization using crowding-based differential
evolution. In IEEE Proceedings of the Congress on Evolutionary Compu-
tation (CEC 2004), pages 1382–1389, 2004.

11

