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1 Introduction

News about technological innovations appear in the media constantly and market
participants adjust their expectations and economic decisions accordingly. Because
the diffusion of an innovation takes time, a positive news shock can initiate a boom
absent of any concurrent technological change. We ask in this paper whether the
economic environment at the time when the news arrives influences the responses
to this shock. We find evidence of state-dependency mainly in the short-run, with
the differences fading away in the long-run.

The idea of news is not novel in the macroeconomics literature, but has been
reinvigorated in recent years following Beaudry and Portier (2006). In their sem-
inal paper, they present evidence that today’s news contains information about
future technological prospects. In response to the anticipated future productivity
improvements, economic agents start spending and, thus, consumption and invest-
ment increase. If everyone displays the same reaction to the news, this leads to a
boom. In the medium-run, if agents’ optimism proves to be justified, the economy
follows productivity to a new long-run level; if it does not, a process of liquidation
sets in and the economy returns to its original growth path.

So far news shocks on future productivity have been analyzed only in linear
settings. In this paper we relax the linearity assumption and test whether the effect
of the news is state-dependent, i.e. dependent on the state of the economy at the
time it occurs. Our hypothesis is that even though new technologies are developed
independently of the business cycle, conditional on whether the economy is in a
recession or an expansion the responses to the news shock are different.

Our motivation is the following. Recessions, as defined by the NBER (National
Bureau of Economic Research) quarterly index, are rare events. In the past fifty
years they account only for about 18 percent of the time. By computing the first
and second moments of the main economic indicators, conditional on the economy
being in an expansion or a recession, we find evidence in support of the fact that the
macroeconomic environment is very different in the two state of the economy1. In
bad times, consumer confidence and business expectations are low, consumption
and investment growth rates are below average while uncertainty is high. The
opposite holds true in normal times. Then, why should firms and consumers react
the same to news when the economic conditions are so different at the time the
news is perceived?

Assessing the effects of the news shock in a nonlinear setting is our main con-
tribution to the literature. To perform our empirical analysis, we proceed as fol-
lows. We estimate a five-variable logistic smooth transition vector autoregressive
(LSTVAR) model including TFP, consumer expectations, output, inflation and

1 Details are provided in Appendix A.
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stock prices (SP). Our model builds on Auerbach and Gorodnichenko (2012) and
Teräsvirta, Tjøstheim, and Granger (2010) and allows for state-dependent dynam-
ics through parameters and state-dependent impact effects through the variance-
covariance matrix. We permit the transition in the mean equation and the variance
equation to be different. The transition is indicated by a three-quarter moving
average of the output growth rate, introduced with a lag to avoid endogeneity
problems. Instead of calibrating the parameters of the transition functions, as
usually done in the literature, we estimate them.

The identification of news shocks has been intensively debated in the empir-
ical news shock literature. The initial proposal of Beaudry and Portier (2006)
was to impose either short-run or long-run restrictions. However, their long-run
restriction scheme has been criticized by Kurmann and Mertens (2014) as inappro-
priate for models with more than two variables as it fails to determine productivity
related news shocks in such multivariate systems. Their short-run identification
relies on the assumption that the news shock affects stock prices but is orthogonal
to total factor productivity (TFP) in the short-run. The most prominent identifi-
cation scheme in the literature was brought up by Barsky and Sims (2011). They
identify the news shock via medium-run restrictions based on the method of Uhlig
(2004). The news shock is assumed to be orthogonal to TFP innovations and with
maximum contribution to TFP over a specific horizon. While they initially found
different results than Beaudry and Portier (2006), Beaudry and Portier (2014)
show that the differences stemmed from the different variables included in the
models. Once the same variables are used, the results become similar.

We choose to identify the news shock via a medium-run identification method.
In a non-linear vector autoregressive (VAR) context short-run restrictions are usu-
ally applied. To the best of our knowledge, we are the first to employ a medium-run
identification scheme in a LSTVAR model. The news shock is then defined as the
shock with no impact effect on TFP but with maximal contribution to TFP at a
specific horizon.

To analyze the effects of the news shock we compute generalized impulse re-
sponses that allow for endogenous regime transition by adjusting the transition
functions in every simulation step. This approach accounts for the transition of
the system from one regime to the other as a reaction to a shock and permits to
measure the change in the probability of a regime transition after a news shock
has occurred.

We further investigate the state-dependency in the contribution of the news
shock to the variation in the variables of the model at different frequencies. We
perform a generalization of the forecast error variance decomposition. A basic
forecast error variance decomposition is inapplicable in a nonlinear setting because
the shares do not sum to one.
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We then perform several robustness checks. We compare the effects of the news
shock to those of a confidence shock, obtained by applying short-run restrictions.
The confidence shock is identified as the shock with no impact effect on TFP, but
an immediate effect on consumer expectations. We also compare the results with
those obtained by applying the same identification schemes within a linear VAR
model that includes the same variables.

Our results, both in terms of impulse responses and relative contribution to
the variance of the model’s variables, indicate strong evidence of nonlinearity in
the effects of the news shock mainly in the short-run. The generalized impulse
responses show that the impact effect of the news shock is in general larger in
an expansion than in a recession, while in the long-run the differences fade away.
When analyzing the impact contribution of the news shock to the variation of all
the variables in the model we observe that in an expansion the shares are similar
to the ones in the linear model. In recessions, the news shock contributes more to
the variance of the forward-looking variables, while the contribution to output’s
variance is almost nil. In the medium-run the shares converge to similar values in
both regimes.

Furthermore, because we allow the model to transition from one regime to
the other after a news shock has occurred, we find that news shocks significantly
influence the probability of a regime change both in recessions and expansions.

When we compare the generalized impulse responses to the responses obtained
in the linear model, even though they are qualitatively similar, it becomes evident
that using the linear model to draw conclusions about the effects of the news shock
in either of the regimes is flawed. The results from the linear model would lead
to an underestimation of the effects in an expansion and an overestimation in a
recession.

Comparing the effects of the news shock to those of the confidence shock, we
find that, while in recessions the two deliver basically the same results, the impulse
responses in expansions are stronger for the news shock and the contributions to
the variance of the model’s variables are different.

While there is evidence in favor of state-dependency, the same does not hold
true for the asymmetry in the effects of news shocks. Our results indicate there
is no significant difference between the effects of positive and negative shocks, no
matter whether the shocks hit in an economic downturn or upturn.

The rest of the paper is organized as follows. In Section 2, we present the
empirical approach and the estimation method employed. In Section 3, we describe
the data. We discuss our results in Section 4, and offer some concluding remarks
in Section 5.
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2 Empirical approach

According to van Dijk, Teräsvirta, and Franses (2002), a smooth transition model
can either be interpreted as a regime-switching model allowing for two extreme
regimes associated with values of the transition function of 0 and 1 where the
transition from one regime to the other is smooth, or as a regime-switching model
with a “continuum” of regimes, each associated with a different value of the tran-
sition function.

For our research purpose, we employ a five-dimensional logistic smooth tran-
sition vector autoregressive (LSTVAR) model in levels. We model an economy
with two extreme regimes (expansion, recession) between which the transition is
smooth. By relaxing the assumption of linearity, we allow the model to capture
different dynamics in two opposed regimes.

2.1 Model specification

Formally, the LSTVAR model of order p reads:

Yt = Π′
1Xt(1− F (γF , cF ; st−1)) + Π′

2XtF (γF , cF ; st−1) + ϵt (1)

where Yt = (Y1,t, ....Ym,t)
′ is an m × 1 vector of endogenous variables, Xt =

(1′, Y ′
t−1, . . . , Y

′
t−p) is a (mp+ 1)× 1 vector of an intercept vector and endogenous

variables, and Πl = (Π′
l,0,Π

′
l,1, . . . ,Πl,p′) for regimes l = 1, 2 a (mp+1)×m matrix

where Πl,0 are 1×m intercept vectors and Πl,j with j = 1, ..., p arem×m parameter
matrices.

F (γF , cF ; st) is the logistic transition function with transition variable st,

F (γF , cF ; st) = exp (−γF (st − cF )) [1 + exp (−γ(st − cF ))]
−1 , γ > 0, (2)

where γF is called slope or smoothness parameter, and cF is a location pa-
rameter determining the middle point of the transition (F (γF , cF ; cF ) = 1/2).
Therefore, it can be interpreted as the threshold between the two regimes as the
logistic function changes monotonically from 0 to 1 when the transition variable
decreases. At every period, the transition function attaches some probability of
being in each regime given the value of the transition variable st. ϵt ∼ N(0,Σt) is
an m-dimensional vector reduced-form shock with mean zero and positive definite
variance-covariance matrix, Σt. We allow the variance-covariance matrix to be
regime-dependent but we test it for constancy.

Σt = (1−G(γG, cG; st−1))Σ1 +G(γG, cG; st−1)Σ2 (3)

The transition between regimes in the second moment is also governed by a
logistic transition function G(γG, cG; st−1). We want to allow not only for dynamic
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differences in the propagation of structural shocks through Π1 and Π2 but also
for contemporaneous differences via the two covariance matrices, Σ1 and Σ2. This
method is similar to the one employed in Auerbach and Gorodnichenko (2012)2,
but we depart from their approach by permitting the parameters of the transi-
tion function in the variance equation to differ from the parameters in the mean
equation.

The LSTVAR reduces to a linear vector autoregressive model when γF = γG =
0. The model is then given by:

Yt =Π′Xt + ϵt (4)

where ϵt ∼ N(0,Σ) is a vector of reduced-form residuals with mean zero and
constant variance-covariance matrix, Σ.

2.2 Transition variable

The transition between regimes is defined through the logistic transition functions
while the state of the economy is given by the transition variable. As stated in
Teräsvirta, Tjøstheim, and Granger (2010), economic theory is not always fully
explicit about the transition variable. There are several options. The transition
variable can be an exogenous variable (st = zt), a lagged endogenous variable
(st = Yi,t−d, for certain integer d > 0, and where the subscript i is the position of
this specific variable in the vector of endogenous variables), a function of lagged
endogenous variables or a function of a linear time trend.

For our model, the transition variable needs to follow the business cycle and
clearly identify expansionary and recessionary periods. The NBER defines a re-
cession as ‘a period of falling economic activity spread across the economy, lasting
more than a few months, normally visible in real GDP, real income, employment,
industrial production, and wholesale-retail sales’, which makes the identification
of a recession a complex process based on weighing the behavior of various indi-
cators of economic activity. For this reason, we follow the common rule of thumb
which defines a recession as two consecutive quarters of negative GDP growth.
Consequently, we employ as transition variable st a lagged three quarter moving
average of the quarter-on-quarter real GDP.

This definition of the transition variable is close to the one used in Auerbach
and Gorodnichenko (2012), as they set st to be a seven quarter moving average of
the realizations of the quarter-on-quarter real GDP growth rate, centered at time

2We thank Alan Auerbach, and Yuriy Gorodnichenko for making publicly available their codes
for estimating a STVAR model.
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t. We depart from their approach in the sense that we do not assume the transi-
tion variable to be an exogenous variable, but a function of a lagged endogenous
variable. In order to avoid endogeneity problems, the transition functions F and
G at date t are based on st−1 =

1
3
(gYt−1 + gYt−2 + gYt−3), g

Y
t being the growth rate of

output.
The LSTVAR model is only indicated if linearity can be rejected. It is tested

against the alternative of a nonlinear model, given the transition variable. We can
reject the null hypothesis of linearity at all significance levels, regardless of the
type of LM test we perform (for details, see Appendix B.1).

2.3 Estimation

Once the transition variable and the form of the transition function are set, the
parameters of the LSTVAR model may be estimated using nonlinear least squares
(NLS). With the assumption that the error terms are normally distributed, the
NLS estimator is equivalent to the maximum likelihood estimator.

The conditional log-likelihood function of our model is given by:

log L = const+
1

2

T∑
t=1

log |Σt| −
1

2

T∑
t=1

ϵ′tΣ
−1
t ϵt, (5)

where ϵt = Yt − Π′
1Xt(1− F (γF , cF ; st−1))− Π′

2XtF (γF , cF ; st−1).
The maximum likelihood estimator of the parameters Ψ = {γF , cF , γG, cG,Σ1,Σ2,Π1,Π2}

is given by:

Ψ̂ = argmin
Ψ

T∑
t=1

ϵ′tΣ
−1
t ϵt (6)

We then let Zt(γF , cF ) = [X ′
t(1− F (γF , cF ; st−1)), X

′
tF (γF , cF ; st−1)]

′ be the
extended vector of regressors, and Π = [Π′

1,Π
′
2]

′ such that equation (6) can be
rewritten as:

Ψ̂ = argmin
Ψ

T∑
t=1

(Yt − Π′Zt(γF , cF ))
′Σ−1

t (Yt − Π′Zt(γF , cF )) (7)

It is important to note that conditional on {γF , cF , γG, cG,Σ1,Σ2} the LSTVAR
model is linear in the autoregressive parameters Π1 and Π2. Hence, for given
γF , cF , γG, cG, Σ1, and Σ2, estimates of Π can thus be obtained by weighted least
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squares (WLS), with weights given by Σ−1
t . The conditional minimizer of the

objective function can then be obtained by solving the first order condition (FOC)
equation with respect to Π:

T∑
t=1

(Zt(γF , cF )Y
′
tΣ

−1
t − Zt(γF , cF )Zt(γF , cF )

′ΠΣ−1
t ) = 0 (8)

The above equation leads to the following closed form of the WLS estimator
of Π conditional on {γF , cF , γG, cG,Σ1,Σ2}:

vec(Π̂) =

[
T∑
t=1

(
Σ−1
t ⊗ Zt(γF , cF )Zt(γF , cF )

′)]−1

vec

[
T∑
t=1

(
Zt(γF , cF )Y

′
tΣ

−1
t

)]
,

(9)

where vec denotes the stacking columns operator.
The procedure iterates on {γF , cF , γG, cG,Σ1,Σ2}, yielding Π and the likeli-

hood, until an optimum is reached. Therefore, it can be concluded that, when
γF , cF , γG, cG, Σ1, and Σ2 are known, the solution for Π is analytic. As explained
in Hubrich and Teräsvirta (2013); Teräsvirta and Yang (2014b), this is key for sim-
plifying the nonlinear optimization problem as, in general, finding the optimum
in this setting may be numerically demanding. The reason is that the objective
function can be rather flat in some directions and possess many local optima.

Therefore, we divide the set of parameters, Ψ, into two subsets: the ‘nonlinear
parameter set’, Ψn = {γF , cF , γG, cG,Σ1,Σ2} , and the ‘linear parameter set’, Ψl =
{Π1,Π2}. To ensure that Σ1, and Σ2 are positive definite matrices, we redefine Ψn

as {γF , cF , γG, cG, chol(Σ1), chol(Σ2)}, where chol is the operator for the Cholesky
decomposition.

Following Auerbach and Gorodnichenko (2012), we perform the estimation us-
ing a Markov Chain Monte Carlo (MCMC) method. More precisely, we employ
a Metropolis- Hastings (MH) algorithm with quasi-posteriors, as defined in Cher-
nozhukov and Hong (2003). The advantage of this method is that it delivers not
only a global optimum but also distributions of parameter estimates. As we have
seen previously, for any fixed pair of nonlinear parameters, one can easily com-
pute the linear parameters and the likelihood. Therefore, we apply the MCMC
method only to the nonlinear part of the parameter set, Ψn (details are provided
in Appendix B.3).

2.4 Starting values

From this nonlinear parameter set, we first estimate the starting values for the
transition functions γF , cF , γG, and cG using a logistic regression. The transition

8



function defines the smooth transition between expansion and recession. Every
period a positive probability is attached for being in either regime. This means
that the dynamic behavior of the variables changes smoothly between the two
extreme regimes and the estimation for each regime is based on a larger set of
observations.

A common indicator of the business cycle is the NBER based recession indicator
(a value of 1 is a recessionary period, while a value of 0 is an expansionary period).
We believe that it is reasonable to assume that the transition variable should
attach more probability to the recessionary regime when the NBER based recession
indicator exhibits a value of one. We determine the initial parameter values of the
transition functions by performing a logistic regression of the NBER business cycle
on the transition variable (three quarter moving average of real GDP growth).
Thus, our transition function is actually predicting the likelihood that the NBER
based recession indicator is equal to 1 (rather than 0) given the transition variable
st−1. Defining the NBER based recession indicator as Rec, then the probability of
Rect = 1, given st−1, is:

P (Rect = 1 | st−1) =
exp [−γ(st−1 − c)]

1 + exp [−γ(st−1 − c)]
(10)

The estimation delivers the starting values γ̂F = γ̂G = 3.12 and ĉF = ĉG =
−0.48 (for details see Appendix B.2). Usually, in the macroeconomic literature,
γ is calibrated to match the duration of recessions in the US according to NBER
business cycle dates (see Auerbach and Gorodnichenko (2012); Bachmann and
Sims (2012); Caggiano, Castelnuovo, and Groshenny (2014)). The values assigned
to γ range from 1.5 to 3, but in all these settings, the location parameter, c, is
imposed to equal zero, such that the middle point of the transition is given by
the switching variable being zero. For comparison, we also estimate the logistic
regression forcing the constant to be zero and obtain an estimate for γ that equals
3.56. However, the Likelihood Ratio (LR) test3 shows that the model with inter-
cept provides a better fit. Moreover, the intercept is statistically different from
zero so there is no econometric support for assuming it to be zero (see Appendix
B.2).

The transition function with γ = 3.12 and c = −0.48, is shown in Figure 6.
It is obvious that high values of the transition function are associated with the
NBER identified recessions.

The choice of the other starting parameter values is presented in details in
Appendix B.3.

3Perfoming the LR test for nested models we obtain that D=37.66 with p-value=0.000.

9



2.5 Evaluation

According to Teräsvirta and Yang (2014b), exponential stability of the model may
be numerically investigated through simulation of counterfactuals. By generating
paths of realizations from the estimated model with noise switched off, starting
from a large number of initial points, it can be checked whether the paths of
realizations converge. The convergence to a single stationary point is a necessary
condition for exponential stability4.

Yang (2014) proposes a test for the constancy of the error covariance matrix
applicable to smooth transition vector autoregressive models. To test for constancy
of the error covariance matrix, first, the model has to be estimated under the null
hypothesis assuming the error covariance matrix to be constant over time. Similar
to the linearity test for the dynamic parameters, the alternative hypothesis is
approximated by a third-order Taylor approximation given the transition variable.
In our case, the null hypothesis of a constant error covariance matrix is clearly
rejected (for details, see Appendix B.4).

2.6 Identification of the news shock

2.6.1 Medium-run identification

The medium-run identification (MRI) scheme defines the news shock to be the
shock that does not move TFP on impact and has maximal contribution to it at
horizon H. It is based on the assumption that in the long-run TFP is only affected
by anticipated (news) and unanticipated productivity shocks. This method, intro-
duced by Beaudry, Nam, and Wang (2011) to identify news shocks, differs from
the original one of Barsky and Sims (2011) because the latter aims at isolating
the shock that maximizes its contribution to the forecast error variance of TFP
not only at a given horizon, but to the cumulated forecast error variances over all
horizons up to the truncation horizon. As Beaudry, Nam, and Wang (2011) argue,
the difference is that the first identifies the shocks that have a permanent effect
on TFP, while the second may confound shocks that have either permanent or
temporary effects on TFP. Since the results obtained with the method of Barsky
and Sims (2011) are proven to be sensitive to the choice of forecast horizon, we
prefer to use the approach of Beaudry, Nam, and Wang (2011) instead.

This identification scheme imposes medium-run restrictions in the sense of Uh-
lig (2004)5. Innovations are orthogonalized, for example, by applying the Cholesky

4 When F (γF , cF ; st−1) is a standard logistic function with a single transition variable, a
naive approach for checking the model’s stability is by investigating whether the roots of the lag
polynomial of the two regimes lie outside the complex unit disk. However, this provides only a
sufficient condition for stability.

5We thank Luca Benati for sharing with us his codes for performing a medium-run identifi-
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decomposition to the covariance matrix of the residuals Σ = ÃÃ′, assuming there
is a linear mapping between the innovations and the structural shocks. The unan-
ticipated productivity shock is the only shock affecting TFP on impact. The
news shock is then identified as the shock that has no impact effect on TFP and
that, besides the unanticipated productivity shock, influences TFP the most in
the medium-run, namely it is the shock with the highest share of the forecast error
variance decomposition at some specified horizon H. In the benchmark setting,
we set H = 40 quarters (10 years). We choose this specific horizon as we believe
that shorter horizons are prone to ignore news on important and large techno-
logical innovations that need at least a decade to seriously influence total factor
productivity. On the other hand, longer horizons might ignore shorter-run news
as they only consider news shocks that turn out to be true in the long-run6. We
define the entire space of permissible impact matrices as ÃD, where D is a k × k
orthonormal matrix (DD′ = I)7.

In the linear setting the h step ahead forecast error is defined as the difference
between the realization of Yt+h and the minimum mean squared error predictor for
horizon h8:

Yt+h − Pt−1Yt+h =
h∑
τ=0

Bτ ÃDut+h−τ (11)

The share of the forecast error variance of variable j attributable to structural
shock i at horizon h is then:

Ξj,i(h) =
e′j

(∑h
τ=0Bτ ÃDeie

′
iÃ

′DB′
τ

)
ej

e′j

(∑h
τ=0BτΣB′

τ

)
ej

=

∑h
τ=0Bj,τ Ãγγ

′Ã′B′
j,τ∑h

τ=0Bj,τΣB′
j,τ

(12)

where ei denote selection vectors with the ith place equal to 1 and zeros else-
where. The selection vectors inside the parentheses in the numerator pick out the
ith column of D, which will be denoted by γ. Ãγ is a m × 1 vector and is inter-
preted as an impulse vector. The selection vectors outside the parentheses in both
numerator and denominator pick out the jth row of the matrix of moving average
coefficients, which is denoted by Bj,τ . Our identification scheme implies that the

cation in a linear framework.
6The results for the application of variations of the MRI scheme, i.e. maximizations at

different horizons and up to different horizons, can be provided upon request.
7We use the fact that the model has a moving average (MA) representation Yt = B(L)ϵt, and

assuming that there is a linear mapping between the innovations and the structural shocks of
the form ϵt = Aut, the model has the following structural MA representation: Yt = C(L)ut.

8The minimum MSE predictor for forecast horizon h at time t − 1 is the conditional expec-
tation.
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productivity shock and the news shock account for almost all variation in TFP at
horizon H. We identify the first shock as unanticipated productivity shock and
the second shock as the news shock.

The application of the medium-run identification (MRI) to our nonlinear set-
ting faces one big issue. The calculation of the forecast error variance decompo-
sition depends on the estimation of the GIRFs which are history dependent and
constructed as an average over simulated trajectories. If traditional methods are
used, in general, the shares do not add to one which makes it unclear what is
identified as the news shock. We use instead a method of estimating the gener-
alized forecast error variance decomposition for which the shares sum to one by
construction. Using this approach is the closest we can come to the application of
the medium-run identification scheme. A detailed presentation of the procedure
can be found in Appendix D.2.

2.6.2 Short-run identification

For robustness checks, we employ also a short-run identification (henceforth, SRI)
to identify the news shock. The news shock is defined as the shock that has no
impact effect on TFP, but is the only shock besides the unanticipated productivity
shock that affects a forward-looking variable immediately.

The first SRI defines the news shock as the shock with no impact effect on TFP
and the only shock which affects the index of consumer sentiment (ICS) on impact
besides the unanticipated productivity shock. The news shock is then basically a
confidence shock. We use the news view of confidence, introduced by Barsky and
Sims (2012), which supposes that innovations in confidence summarize information
about future changes in fundamentals.

The second short-run identification (SRI2) is the identification of Beaudry and
Portier (2006) where the news shock is identified as the shock on stock prices
instead of consumer confidence. In the literature it is often argued that the index
of consumer sentiment captures better than stock prices agents’ expectations about
future developments in the economy (for details see Barsky and Sims (2012)).

In the linear framework, we identify this shock by imposing short-run restric-
tions on the moving-average representation of the model. The variance-covariance
matrix of the reduced-form shocks is decomposed into two triangular matrices by
applying the Cholesky decomposition Σ = AA′. Thereby, the innovations are or-
thogonalized and the first two shocks are identified as unanticipated productivity
shock and news shock. The rest of the shocks are not economically interpreted.

The application of the SRI to the nonlinear setting is rather straight forward.
We apply the Cholesky decomposition to the history-dependent impact matrix
Σt = Σ1(1−G(γG, cG; st−1)) + Σ2G(γG, cG; st−1) such that Σt = AGt A

G′
t .

The impact matrix AGt is history-dependent and changes with G(γG, cG; st−1).
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The first shock is then identified as an unanticipated productivity shock whereas
the second shock is the news shock. For more details, see Appendix D.1.

2.7 Sufficient information

Already mentioned in Barsky and Sims (2011), and further discussed in Sims
(2012), the identification of news shocks may be confronted with the non-invertibility
(or non-fundamentalness) problem. Non-invertibility arises when the economic
agents have richer information sets than the econometrician, and therefore the
observable variables included in the VAR do not contain sufficient information to
perfectly recover the model’s underlying structural shocks.

To be sure that our identified news shock is indeed a structural shock, we per-
form the test for sufficient information of Forni and Gambetti (2014) in our linear
setting. The two authors show that when interested only in a single structural
shock (or a subset of shocks), one can check whether the VAR is information-
ally sufficient by performing an orthogonality test9. For an estimated shock to be
structural, a necessary condition is orthogonality to the past of the state variables.

We follow their procedure for testing orthogonality of the estimated shock (for
details, see Appendix C.1).

The orthogonality test indicates whether the model contains sufficient infor-
mation to identify a structural shock but it does not guarantee that this structural
shock is indeed the desired news shock.

2.8 Generalized impulse responses

We analyze the dynamics of the model by estimating impulse response functions.
The nonlinear nature of the LSTVAR does not allow to estimate traditional im-
pulse response functions due to the fact that the reaction to a shock may be
history-dependent.

In the literature, state-dependent impulse responses have often been used. In
the LSTVAR, the transition function assigns every period some positive probabil-
ity to each regime. To estimate state-dependent impulse response functions, an
exogenous threshold is chosen that splits the periods into two groups depending
on whether the values of the mean transition function are above or below that
threshold. Given this threshold, the model is linear for a chosen regime which
allows to estimate regime-specific IRFs. Nevertheless, state-dependent impulse
response functions have several drawbacks. The imposed threshold is set exoge-
nously, which arbitrarily assigns periods to either regime even though the model

9We thank Luca Gambetti for providing us his codes for performing the orthogonality test.
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assigns some probability to both regimes at each period. Furthermore, the possi-
bility of a regime-switch after a shock has occurred is completely ignored.

In order to cope with these issues, we estimate generalized impulse response
functions (GIRFs) 10 instead as initially proposed by Koop, Pesaran, and Potter
(1996). In addition, generalized impulse response functions have the advantage
that they do not only allow for state-dependent impulse responses but also for
asymmetric reactions. GIRFs may be different depending on the magnitude or
sign of the occurring shock. A key point is that GIRFs allow to endogenize regime-
switches if the transition function is a function of an endogenous variable of the
LSTVAR. This allows us to see whether a shock affects the economy strong enough
to move it from one regime to the other. In the literature, this point has usually
been ignored.11

Hubrich and Teräsvirta (2013) define the generalized impulse response function
as a random variable which is a function of both the size of the shock and the
history. It is defined as follows:

GIRF (h, ϵt,Ωt−1) = E
[
Yt+h | ϵδt ,Ωt−1

]
− E [Yt+h | Ωt−1] (13)

where ϵδt is a vector of shocks, and Ωt−1 is the history the expectations are
conditioned on and which contains the initial values used to start the simulation
procedure.

The GIRFs are estimated by simulation. For each period t, E [Yt+h | Ωt−1] is
simulated based on the model and random shocks:

Y sim
t+h =Π′

1X
sim
t+h(1− F (γF , cF ; st+h−1)) + Π′

2X
sim
t+hF (γF , cF ; st+h−1) + ϵt+h (14)

The transition functions, F (γF , cF ; st+h−1) and G(γG, cG; st+h−1), being func-
tions of an endogenous variable of the model, are allowed to adjust at every simu-
lation step. Therefore, also the time-dependent covariance matrix Σt+h changes in
every simulation step, and this way the shocks are drawn independently at every
horizon based on the history and the evolution of Σt+h:

ϵt+h ∼ N (0,Σt+h)

To simulate E
[
Yt+h | ϵδt ,Ωt−1

]
, ϵδt is set to a specific shock, where δ indexes

the chosen identification scheme, magnitude and sign. For the rest of the horizon
ϵt+h ∼ N (0,Σt+h) for h ≥ 1. By letting each of the transition functions update

10We thank Julia Schmidt for offering us her codes on computing GIRFs for a threshold VAR
model.

11To our knowledge Caggiano et al. (2014) is the only paper to endogenize the transition
function.
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every simulation step a possible regime-transition in the aftermath of a shock is
allowed.

For each period, the history Ωt−1 contains the starting values for the simulation.
For every chosen period, we simulate B expected values up to horizon h given the
model, the history and the vector of shocks. For every chosen period, we then
average over the B simulations.

To analyze the results, we sort the GIRFs according to some criteria such
as regime, sign, or magnitude of the shocks and we scale them in order to be
comparable. We define a period as being a recession if F (γF , cF ; st−1) ≥ 0.5 and
an expansion otherwise.12 Then, to obtain the effect of a small positive shock in
recession, we average over the chosen GIRFs fulfilling all these criteria. Details
are provided in Appendix D.

2.9 Generalized forecast error variance decomposition

In a nonlinear environment, the shares of the forecast error variance decomposition
generally do not sum to 1 which makes their interpretation rather difficult. Lanne
and Nyberg (2014) propose a method of calculating the generalized forecast error
variance decomposition such that this restriction is imposed.

They define the generalized forecast error variance decomposition of shock i,
variable j, horizon h and history Ωt−1 as:

λj,i,Ωt−1(h) =

∑h
l=0GIRF (l, δit,Ωt−1)

2
j∑K

i=1

∑h
l=0GIRF (l, δit,Ωt−1)2j

(15)

The denominator measures the aggregate cumulative effect of all the shocks,
while the numerator is the cumulative effect of the ith shock. By construction,
λj,i,Ωt−1(h) lies between 0 and 1, measuring the relative contribution of a shock to
the ith equation to the total impact of all K shocks after h periods on the jth
variable. According to the authors, the GIRF is readily generalized by averaging
over the relevant shocks and histories. They recommend computing the GFEVD
as the average of λj,i,Ωt−1(h) over shocks and over all the histories. More details
about the computation of the GFEVD can be found in Appendix D.4.

3 Data

We work with quarterly data for the U.S. economy from 1955Q1 to 2012Q4. This
period contains nine recessions of different magnitudes which provide enough vari-
ation.

12 At F (γF , cF ; st−1) = 0.5, the model attributes 50 percent probability to each regime
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Our benchmark system contains five variables: TFP adjusted for variations in
factor utilization, University of Michigan index of consumer sentiment, real output,
inflation and stock prices. As advised in Beaudry, Portier, and Seymen (2013), we
try to keep the number of variables as low as possible while assuring we have in-
formation sufficiency. Total factor productivity is a measure of productivity in the
economy whereas stock prices represents a forward-looking variable which contains
information about technological innovations. The consumer sentiment index is an-
other forward-looking variable that contains information about the expectations
of consumers and producers. Output includes information about the state of the
economy. By including inflation we take care of the nominal side of the economy
and add another forward-looking variable. By adding these three forward-looking
variables, we believe that we encompass enough information to identify the news
shock. For robustness checks, we additionally include consumption and hours
worked.

We use the series of TFP adjusted for variations in factor utilization con-
structed with the method of Basu, Fernald, and Kimball (2006). They construct
TFP controlling for non-technological effects in aggregate total factor productivity
including varying utilization of capital and labor, nonconstant returns and imper-
fect competition, and aggregation effects. They identify aggregate technology by
estimating a Hall-style regression equation with a proxy for utilization in each
disaggregated industry. Aggregate technology change is then defined as an ap-
propriately weighted sum of the residuals. The series of TFP annualized percent
change adjusted for utilization for the nonfarm business sector is available on the
homepage of the Federal Reverse Bank of San Francisco13. To obtain the log-level
of TFP, the cumulated sum of dTFP was constructed. The S&P 500 stock mar-
ket index is used as a measure of stock prices14. For output we use the log of
the real gross value added for the nonfarm business sector available from the U.S.
Department of Commerce: Bureau of Economic Analysis. For hours worked the
measure hours of all persons for the nonfarm business sector available from the
U.S. Department of Labor: Bureau of labor Statistics is employed. Everything is
in logs and adjusted for population (US Population, all persons ages 15-64) and
the price level for which we use the implicit price deflator for the nonfarm business
sector both available from the U.S. Department of Labor: Bureau of Labor Statis-
tics. The price deflator (PD) is also used to compute the annualized inflation
rate adjusted for population IR = 4∗(log(PDt) − log(PDt−1)). It is sometimes
argued that consumer confidence measures reflect more closely the expectations of
firms and households about future technological innovations and economic behav-
ior. We work with data from the surveys of consumers conducted by the University

13http://www.frbsf.org/economic-research/total-factor-productivity-tfp/
14http://data.okfn.org/data/core/s-and-p-500♯data
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of Michigan. For the whole sample only the index of consumer expectations for
six months is available.15 As a measure of consumption we use the log of the
sum of Personal Consumption Expenditures for Nondurable Goods and Personal
Consumption Expenditures for Services (both available from the Department of
Commerce: Bureau of Economic Analysis) divided by the price deflator and popu-
lation. Hours worked are measured as the log of Nonfarm Business Sector: Hours
of All Persons (available from the U.S. Department of Labor: Bureau of Labor
Statistics) divided by population.

4 Results

4.1 Linear setting

We estimate a VAR in levels and do not assume a specific cointegrating relation-
ship because this estimation is robust to cointegration of unknown form and gives
consistent estimates of the impulse responses, as it is stated in Sims, Stock, and
Watson (1990). Moreover, in several papers (e.g. Barsky and Sims (2011), Beaudry
and Portier (2014)) it is shown that VAR and VEC models deliver similar results.
Our system features four lags, as indicated by the Akaike Information Criterion.
We keep the same number of lags for the nonlinear model.

We apply the three identification schemes to isolate structural shocks. To make
sure that our benchmark model is not informationally deficient, hence, that the
identification schemes we employ provide indeed structural shocks, the fundamen-
talness test of Forni and Gambetti (2014) is performed. In Table 4 from Appendix
C.2, we report the results for the orthogonality test for the short-run identifica-
tion schemes for the benchmark model (S3) and three other VAR specifications
(S1,S2 and S4)16. In Table 5, the results of the test applied to the medium-run
identification are reported.

It is obvious that specification S1, which is a bivariate model with TFP and
SP instead of ICS (the basic framework of Beaudry and Portier (2006)), is in-
formationally deficient. However, when replacing SP with ICS (S2), the model
performs better in identifying the structural shock, orthogonality being rejected
rarely and only at a 10% significance level. Our results for S1 are similar to those

15Consumer confidence reflects the current level of business activity and the level of activity
that can be anticipated for the months ahead. Each month’s report indicates consumers assess-
ment of the present employment situation, and future job expectations. Confidence is reported
for the nation’s nine major regions, long before any geographical economic statistics become
available. Confidence is also shown by age of household head and by income bracket. The pub-
lic’s expectations of inflation, interest rates, and stock market prices are also covered each month.
The survey includes consumers buying intentions for cars, homes, and specific major appliances.

16The four specifications are described in Table 3 from Appendix C.2
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obtained by Gambetti (2014-2015), although the p-values he reports are in general
smaller than ours. A reason for the difference can be the fact that our samples
cover different time spans (1960Q1-2010Q4 in Gambetti (2014-2015)) or that the
dataset used in his analysis contains more time series (107 opposed to 87). The
results for S2 suggest that a confidence indicator such as the index of consumer
sentiment performs better than stock prices in providing the model with sufficient
information to identify structural shocks, even in a bivariate model.

For our 5-variable benchmark model, the p-values in the two tables indicate
that orthogonality is never rejected at the 5% significance level. This specification
which contains the three forward looking variables mostly used in the literature,
stock prices, inflation, and a measure of consumer confidence, passes the test of
fundamentalness. A model with seven variables, by adding consumption and hours
worked to the benchmark model, also contains enough information. Nevertheless,
Gambetti (2014-2015) shows, using the fundamentalness test of Forni and Gam-
betti (2014), that a four variables model including TFP, SP (or output), consump-
tion and hours worked does not have sufficient information to identify the news
shock which indicates that consumption and hours worked are not a necessary
addition to our benchmark system to identify the news shock.

In Figure 7 from Appendix E, a scatterplot of the news shock identified with
MRI and the confidence shock obtained with SRI for our benchmark five-variable
model is displayed. The two identification schemes identify very similar structural
shocks. This result is further confirmed by the high correlation between the two
shocks (0.76). Impulse responses displayed in Figure 8 from Appendix E show that
both identified shocks trigger a strong positive co-movement of the real economy,
while TFP only starts increasing after some quarters. This result also indicates
that a confidence shock resembles very much a news shock.

Under the two identifications, TFP is not allowed to change on impact but it
is important to note that there is neither a significant rise above zero for the first
two years. After that, TFP starts rising in both cases until it stabilizes to a new
permanent level which is slightly higher under MRI. This result is in line with those
found in Beaudry and Portier (2006) and Beaudry, Nam, and Wang (2011), but
partly contradict those of Barsky and Sims (2011). BS find a rapid and immediate
rise in TFP following their news shock which is insignificant in their four-variable
model. The reason why the impulse response of TFP to the identified shock under
MRI is different from the ones obtained by Barsky and Sims (2011) might be the
fact that BS isolate the shock that maximizes its contribution to the forecast error
variance of TFP not only at a given horizon, but over all horizons up to H. As
already argued before, this measure might include short-run movements in TFP.
The information content of the two models could have been another reason, but
our results stay the same even when we compare the 7-variable models.
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The index of consumer sentiment rises significantly on impact in both settings.
This finding is consistent with those of Beaudry, Nam, and Wang (2011) who use
the same confidence indicator, and Barsky and Sims (2011) who include in their
7-variable model a component of the index (i.e. Business Conditions expected
during the next 5 years).

Output also increases on impact, and continues to increase for about eight
quarters until it stabilizes at a new permanent level. The effect on output of the
news shock obtained with MRI is stronger. This contradicts the results of Barsky
and Sims (2011), who, with a similar identification scheme, conclude there is no
large increase in output as anticipation of a TFP increase, but, on the contrary,
the news shock has a negative impact effect on output. However, Beaudry, Nam,
and Wang (2011) obtain similar results under most of the identification schemes
they employ.

Inflation falls significantly at impact, more under MRI, this response being very
close to the one obtained by Barsky and Sims (2011). In this paper, the authors
argue that this reaction to a positive news shock is consistent to the New Keynesian
framework in which current inflation equals an expected present discounted value
of future marginal costs. The impulse response of inflation under SRI is similar to
the one obtained by Beaudry, Nam, and Wang (2011).

Stock prices rise on impact to the same level in both cases, but while under SRI
the response resembles the one in Barsky and Sims (2011), under MRI stock prices
continue increasing for a long time, reaching a peak after some twenty quarters.

In Figure 9 from Appendix E it can be seen that adding other variables does
not significantly modify the results for the first five variables. Inflation diminishes
faster, while the response of stock prices is almost identical under the two iden-
tification schemes. For the two new variables added, the responses are similar to
those presented in Beaudry, Nam, and Wang (2011). Both consumption and hours
worked rise on impact, and while the response of hours worked is hump-shaped,
the effect on consumption is permanent. The response of consumption is slightly
bigger under MRI, while the opposite holds for hours worked.

These findings confirm the initial results of Beaudry and Portier (2006) and
partially contradict those of Barsky and Sims (2011). Under the two different
identification schemes, we find extremely similar results. A shock on a measure of
consumer confidence with no impact effect on TFP (news or optimism/pessimism
shock) proved to be highly correlated with a shock with no impact effect on TFP
but which precedes rises in TFP. This supports the conclusion of Beaudry, Nam,
andWang (2011) that all predictable and permanent increases in TFP are preceded
by a boom period, and all positive news shocks are followed by an eventual rise
in TFP. After the realization of a positive news shock we find an impact and
then gradual increase in output, the survey measure of consumer confidence, stock
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prices, hours worked, and consumption, and a decline in inflation while TFP only
follows some quarters later. According to Beaudry, Nam, and Wang (2011), the
period until TFP starts increasing can be defined as a non-inflationary boom phase
unaccompanied by an increase in productivity.

4.2 Nonlinear setting

In this section, we take the analysis one step ahead and examine whether the time
when the news arrive matters. More precisely, we want to see whether the state of
the economy (i.e. the economy being in an expansion or in a recession) influences
the responses to the news shock. Will the boom effect of a positive news realization
be the same in the two states? Will it matter whether it is good or bad news? Or
is there a difference if the news are extreme or rather small?

To answer these questions, we estimate a smooth transition vector autoregres-
sive model. We rely on the same setting as in the linear model containing five
variables (TFP, ICS, output, inflation, SP) with four lags. As a contribution to
the STVAR literature, our model comprises two instead of only one transition
function, one for the mean equation and one for the variance equation. Moreover,
we estimate both sets of parameters instead of simply calibrating them.

The results presented in Figure 10 from Appendix F show that the parameters
in the transition function for the mean equation do not depart too much from the
starting values (i.e. the initial estimates obtained using a logistic regression), while
the value of γG increases a lot after the MCMC iterations for the variance equation.
This indicates that the transition behavior from recession to expansion is not the
same for the mean and the variance of the economy. The transition in the mean
is much more smooth than in the variance where it approaches a regime-switch.

We further evaluate the model to verify that it is not explosive and it delivers
interpretable results. Because we estimate the model with level data that are
potentially integrated or growing over time, it is clear that some of the roots will
be very close to one.17We use the method indicated by Teräsvirta and Yang (2014b)
to examine the stability of the system. The convergence to a single stationary point
is a necessary condition for exponential stability, and therefore for our model not to
be explosive. On these grounds, we simulate counterfactuals for our model with all
the shocks switched off. In the long-run, the model converges to a stable path. By
plotting the simulated paths in first differences we can show that they converge to
zero (see Figure 11 in Appendix F). It is clear for each variable in our model that,
independent of the history in the dataset chosen as initial values, the trajectories

17We prefer to estimate the model in levels to keep the information contained in long-run
relationships. Sims, Stock, and Watson (1990) argue that a potential cointegrating relationship
does not have to be specified to deliver reliable estimates. Moreover, Ashley (2009) shows that
impulse response functions analysis can be more reliable if the model is estimated in levels.
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converge to the same point. We can conclude that the stability assumption is not
contradicted by these calculations, and therefore our model is not explosive.

Note that non-explosiveness of the model is necessary for the estimation of
generalized impulse response functions and the generalized forecast error variance
decomposition. Since our results for the nonlinear VAR are qualitatively similar to
those obtained with the linear VAR, which are further in line with the literature,
we are confident that the model is trustworthy.

4.2.1 Variance decomposition

In Table 1 we display the share of the (generalized) forecast error variance of the
variables attributable to the news shock at different horizons in the two regimes
of the STVAR model and in the linear VAR model. The numbers are percentage
values. Not surprisingly, the contributions of the news shock are very close in
expansions to those in the linear model since more than 85 percent of the periods
contained in our sample are defined as normal times. These results are reassuring
since they indicate that the two methods for computing the variance decomposition
give similar results. The only bigger difference is the contribution of the news shock
to the variance decomposition of TFP in expansions. In this case the news shock
accounts for a bigger share of the forecast error variance of TFP both at high and
lower frequencies.

In the linear model, the news shock explains little of the variation of TFP in
the short-run, but almost 40 percent of it at a horizon of ten years. On impact,
it accounts for almost half of the variance decomposition of the confidence index
and inflation, and while the share stays almost constant in the case of inflation,
for confidence it increases to more than 70 percent at frequencies up to ten years.
The shock contributes less to the forecast error variance of output and stock prices
on impact, about 20-25 percent, but the contribution increases significantly over
time. It is more than 60 percent in the case of stock prices, and almost 80 percent
for output at a horizon of ten years.

When making a comparison of the results for the two regimes of the nonlinear
model, it becomes clear that the contribution of the news shock to the variance of
all the variables in the model is state-dependent. The medium-run contribution to
TFP is above 50 percent in both regimes. In expansion, the news shock influences
all variables except for TFP on impact, but the contribution is below 50 percent,
except for the case of inflation. On the other hand, in recession the news shock
explains on impact a much bigger share of the variance in consumer confidence,
inflation and stock prices while its contribution to the variance decomposition of
output is almost nil. In the medium-run the contributions converge to similar
values in the two regimes, with some slightly bigger values in the case of recessions
for TFP, inflation and stock prices.
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Table 1: Generalized Forecast Error Variance Decomposition for the news shock (MRI). The
numbers indicate the percent of the forecast error variance of each variable at various forecast
horizons explained by the news shock in expansions, recessions, and the linear model.

Impact One year Two years Ten years

TFP Linear 0 0.13 0.95 38.67
Expansion 0 6.82 12.14 53.68
Recession 0 42.66 42.65 67.54

Confidence Linear 56.06 72.09 75.5 71.76
Expansion 47.43 73.81 77.58 67.83
Recession 86.79 70.14 70.61 61.77

Output Linear 25.21 57.21 69.27 78.96
Expansion 24.65 54.49 70.63 72.11
Recession 1.25 39.9 64.57 71.48

Inflation Linear 44.28 41.1 43.31 48.57
Expansion 51.04 52.61 54.11 49.65
Recession 84.86 72.68 70.92 66.55

Stock Prices Linear 18.24 30.75 40.1 63.11
Expansion 13.77 37.79 50.67 59.11
Recession 69.62 79.2 79.12 72.14

We find the very big impact contributions of the news shock to the forecast
error variance of all three forward-looking variables in the recession to be a par-
ticularly interesting result, mostly when the non-forward looking variable in the
group, output, is almost unaffected. Another key finding is that, even though in a
recession the news shock explains little of the variance decomposition of output on
impact, the share increases significantly and fast, such that already in one year it
is close to 40 percent. The same pattern is observed in the case of TFP, the news
shock explaining more than 40 percent of its variance decomposition in recession
at a horizon of one year.

In Table 6 from Appendix F, we present the total contribution of the unan-
ticipated productivity shock and the news shock to the forecast error variance of
the variables. In the linear model, the two productivity related shocks combined
explain almost 98 percent of the variation in TFP, about 93 percent of the vari-
ation in output at a horizon of ten years, and more than half of the variation in
the other three variables. When we relax the linearity assumption, we observe
the state-dependency in the combined contributions. Overall, we find much bigger
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contributions of these two shocks in recessions both at high and lower frequencies.
The differences are particularly big on impact. In recessions, the two shocks ex-
plain together more than 95 percent of the impact variance decomposition of all
the variables, while for TFP and inflation the shares are almost 100 percent. Since
the two productivity shocks combined explain almost all the variation in recession,
we have support for their high importance for driving economic fluctuations when
they occur in downturns. They continue to play a major role also in normal times,
but in that case there is more chance for other shocks to contribute to business
cycle fluctuations.

When comparing the contributions of the news shock to those of the confi-
dence shock (SRI) to the variance decomposition of the variables in the model, we
find that in recessions there are some similarities between them. By looking at
the results in Table 7 from Appendix F, it is clear that in recessions, besides the
unanticipated productivity shock, the confidence shock has the largest influence
on TFP (i.e. approximately 45 percent). Therefore, we can conclude that as long
as there is sufficient information in the model also SRI isolates a shock that has
a high medium-run impact on TFP. However, with the exception of the impact
effect on consumer confidence, the confidence shock explains much less of the vari-
ance decomposition of the variables than the news shock, both at low and higher
frequencies in the case of recessions. The differences between the contributions of
the two shocks are even bigger when looking at expansions. The confidence shock
contributes little on the short-run to TFP, output, inflation and stock prices, while
on the medium-run the contribution increases, but it does not reach the level of the
news shock. Again the only exception is the impact contribution of the confidence
shock to the index of consumer sentiment which is twice as big as the one of the
news shock.

These findings raise the question whether not only the reactions to the shocks
is state-dependent, but actually different shocks are identified depending on the
state of the economy. The contributions of the news shock to variables in recession
resemble those of a confidence shock which is not the case in expansion. It is
possible that the nature of the news shock as well as the unanticipated productivity
shock are not exactly the same in different regimes which leads to a difference in
the contributions to variables.

4.2.2 Generalized impulse responses

The estimation of impulse response functions for a LSTVAR model is not straight
forward. While Auerbach and Gorodnichenko (2012) estimate regime-dependent
impulse response functions and Owyang, Ramey, and Zubairy (2013) opt for
Jorda’s method (Jorda (2005)), we decide to estimate generalized impulse response
functions. Our way of estimating the GIRFs relaxes the assumption of staying in
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one regime once the shock hits the economy. A very important aspect is that the
output is an endogenous variable of the model. When simulating the model for the
computation of the GIRFs, this allows us to adjust the transition function every
simulation step. In response to a shock, our method allows the model to change
the regime. As a policy maker, it is of great interest whether news shocks can
enforce regime changes. Moreover, we would actually expect that the reason for
a regime change is a strong shock to the economy. By excluding this possibility a
very interesting and important quality of the LSTVAR is ignored.

In Figure 1, the impulse responses of TFP and consumer confidence to a one
standard deviation news shock obtained with the MRI scheme are displayed. Re-
sults are qualitatively very much in line with those obtained in the linear setting.
A news shock about a technological innovation leads to an immediate increase in
consumer confidence. However, the impact effect is bigger in expansions, and con-
tinues to be bigger for almost five years after the shock hits. In the case of TFP,
there is no impact effect of the news shock in expansions, and also no significant
change in the following two years. After that, TFP starts increasing, the change
being of about one percentage point in ten years. There is also in this case a
state-dependency evident in the short-run. The difference comes from the almost
immediate reaction of TFP to the news shock when it hits in a recession. This
indicates that there is not so much of an anticipation in this case.

The significance of the difference between the two regimes can be tested with
confidence bands. Confidence bands indicate that the regime-dependence in the
response to a news shock manifests itself in the short- and medium-run, while in
the long-run the responses in the two regimes converge and the confidence bands
overlap. This is not surprising as the same shock pushes the economy in a similar
direction and every period some probability is attached to both regimes. When
analyzing the confidence intervals for the two impulse responses, it is evident
that those for recessions are much wider, mostly in the short-run, than those for
expansions. The explanation is that we have more than eight times less starting
values for the simulations in the case of recessions. Even though we simulate eight
times more for each starting value belonging to this regime, it is clear that the
much smaller number of recessionary periods in the sample matters18.

In Figure 2, the impulse responses of the other three variables of the model,
output, inflation and stock prices to a one standard deviation news shock obtained
with the MRI scheme are displayed. Similarly to the responses of TFP and ICS,
the responses are qualitatively similar, but there are quantitative differences. In-
flation drops significantly in both states of the economy, more in recessions, but
the state-dependency in responses fades away fast. Stock prices respond positively
to the news shock. The reaction in recessions is bigger but the impact difference

18For details about the computation of GIRFs and their confidence bands, see Appendix D.
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Figure 1: Generalized impulse response functions to a positive small news shock under MRI.
The starred black line is the point estimate in recession, and the solid blue line is the point
estimate in expansion. The dashed black lines define the 95% bias-corrected confidence interval
for recession, while the shaded light grey area represents the 95% bias-corrected confidence
interval for expansion. The confidence bands indicate the 5th and the 95th percentile of 1,000
MCMC draws. The unit of the vertical axis is percentage deviation from the case without the
shock (for ICS it is points), and the unit of the horizontal axis is quarters.

is not significant. At a horizon of two to five years, the effect of the news on stock
prices seems to be larger in expansions. A key finding is the response of output
to the news. In expansion, we have clear evidence of a positive effect of the news
shock on output. On the other side, in a recession the impact effect is unclear,
and not significantly different from zero for at least one year. After some time
output starts increasing but the increase is much lower than the one occurring in
an expansion.
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Figure 2: Generalized impulse response functions to a positive small news shock under MRI.
The starred black line is the point estimate in recession, and the solid blue line is the point
estimate in expansion. The dashed black lines define the 95% bias-corrected confidence interval
for recession, while the shaded light grey area represents the 95% bias-corrected confidence
interval for expansion. The confidence bands indicate the 5th and the 95th percentile of 1,000
MCMC draws. The unit of the vertical axis is percentage deviation from the case without the
shock, and the unit of the horizontal axis is quarters.

In Figure 14 from Appendix F, the responses to a small positive, a big positive,
a small negative and a big negative news shock for both regimes are displayed. The
big shock is three times the size of the small shock. The results are normalized
to the same magnitude and sign to make them comparable. We find that the re-
sponses are qualitatively very similar. There are quantitative differences, though.
It can be stated that the effect of a small negative shock in a recession seems
to exhibit a stronger effect on output in the long-run. Thus, it is indicated that
negative news depress the economy more in bad than in good times. Further-
more, small negative news shocks have stronger effects than the positive ones on
consumer confidence and stock prices in the long-run, independent of the regime.
Nevertheless, the magnitude and the sign of the shock do not seem to play an
important role. Generally, it can be said that the reaction to a negative shock is
slightly stronger and the reaction to a big shock increases by less than the increase
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in shock size. But the differences are not statistically significant.
As a next step, we compare the results obtained for the news shock with those

for the confidence shock, under the SRI scheme (as showed in Figure 12 from
Appendix F). We find that the results from the two identification schemes are
qualitatively very similar to each other as well as to the linear case. If there
are differences between the two identification methods they are of quantitative
nature. The impulse responses for recession are actually almost the same for both
identification schemes. This goes in line with the findings of the GFEVD which
indicate that in recession the news shock is basically a confidence shock.

On the other hand, for the expansionary regime quantitative differences can
be detected. While the effect of a news shock on total factor productivity is very
much the same in the short run, TFP grows stronger under MRI even though the
reaction of the index of consumer sentiment is almost the same. In expansion, a
shock to consumer confidence does not reflect the entire news shock.

A possible explanation for the quantitative differences in expansion is the con-
struction of MRI. With this identification method, it is possible that not exactly
the same shock is identified in both regimes.The reason would be that not the
same disturbances have the highest influence on medium-run TFP depending on
whether they occur in expansionary or recessionary times. In recession, the highest
influence on medium-run TFP seems to have a shock similar to the one identified
with SRI. What influences TFP additionally when the shock occurs in expansion
is not entirely clear.

When we make the comparison of the generalized impulse responses to the
responses obtained in the linear setting, as it can be seen in Figure 3, we observe
a strong similarity, apparent mainly in the short-run, between the responses in
expansion and in the linear model. However, on the medium-run, it is evident
that the responses to the news shock are stronger in expansions than on average.
Therefore, using a linear model to show the effects of news shocks in normal times
may underestimate their value. We see that the news shock has in expansion a
much bigger effect on output than the linear model would predict, output stabi-
lizing at a twice as big new permanent level in the expansionary regime. Similar
conclusions can be drawn for TFP. Moreover, there is a temporary overreaction of
stock prices to the news in expansion which the linear model misses.

On the contrary, using the impulse responses from a linear model to show the
effects of a news shock in recessions may determine an overestimation of its value.
As it can be seen in Figure 3, in a recession a news shock has on confidence half the
impact effect implied by the linear model. Furthermore, output does not react for
some quarters to a positive news shock in a recession, although the linear model
indicates an immediate positive reaction.
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Figure 3: Comparison of the state-independent and the state-dependent effect of the news shock
(under MRI). The figure displays the generalized impulse response functions to a positive small
news shock in an expansion as the blue dotted line, the generalized impulse response functions
to a positive small news shock in a recession as the starred black line, and the impulse responses
to a news shock obtained by applying the same identification scheme in the linear model as the
red line. The shaded light grey area represents the 95% bias-corrected confidence interval for the
linear model. The confidence bands indicate the 5th and the 95th percentile of 1,000 MCMC
draws. The unit of the vertical axis is percentage deviation from the case without the shock (for
ICS it is points), and the unit of the horizontal axis is quarter.

As a robustness check, we apply the identification scheme of Beaudry and
Portier (2006) (SRI2). The news shock is then identified as the shock on stock
prices instead of the index of consumer sentiment which has no impact effect
on TFP. The impulse responses, displayed in Figure 13 from Appendix F, are
qualitatively very similar but in absolute values smaller in both regimes than the
impulse responses for the news shock obtained with the MRI and the confidence
shock identified by applying the SRI. Thus, it is confirmed that stock prices do not
capture the expectations of market participants as well as the index of consumer
sentiment.
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4.2.3 Regime transition

The probability of a change in regime is strongly influenced by news shocks.
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Figure 4: Regime transition probability change following a news shock. The four figures display
the change in the probability of switching from an expansion to a recession starting one year
after a news shock occured. The blue line shows the behavior following a news shock obtained
with MRI, while the shaded light blue area represents the 95% bias-corrected confidence interval.
The confidence bands indicate the 5th and the 95th percentile of 1,000 MCMC draws. The unit
of the vertical axis is percentage points, and the unit of the horizontal axis is quarter.

The results in Figure 4 and Figure 5 present the change in the probability
of switching from one regime to the other starting one year after a news shock
happened. We ignore the effect on the probability of switching for the first four
quarters since the results are influenced by the starting values. Because our model
features four lags, for the first four simulation periods the probability of switching
depends on real data.

As shown in Figure 4, when the economy is in expansion, a positive small news
shock reduces the probability of a transition to recession by approximately four
percentage points after one year. The effect of a three times bigger shock is not
increasing this probability much. When a big positive news shock hits the economy
during normal times, the probability of going into a recession is reduced by almost
six percentage points after one year. An interesting finding is the effect of the
positive news shock on the transition probability after five years. Although in the
short-run the news shock seems to keep the economy in expansion, in the medium-
run, once the improvements in productivity become apparent (i.e. TFP starts
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increasing), they may acknowledge that they have overrated the future evolution
of the economy and start behaving accordingly. This behavior then generates a
bust, as the probability of moving from an expansion to a recession increases.
This result confirms the findings of Beaudry and Portier (2006) that booms and
busts can be caused by news shocks and no technological regress is needed for the
economy to go in a recession.

Another important result is the effect of the negative news shock in an ex-
pansion. While the small news shock increases the probability of a transition to
recession by approximately three percentage points after one year, a big negative
shock increases the switching probability more than proportional to its size. The
big negative news shock has an extremely large effect in expansion, when it in-
creases the probability of a transition to recession by almost twenty percentage
points. This shows that strong bad news can make a boom end, and the down-
turn is fast and sharp. A reason for this behavior is given by Van Nieuwerburgh
and Veldkamp (2006) who explain that expansions are periods of higher precision
information. Therefore, when the boom ends, precise estimates of the slowdown
prompt strong reactions.

In Figure 5, we observe that, if the economy is in a recession, a small positive
news shock increases the probability of a transition to an expansion by less than
five percentage points after four quarters. If the shock is three times bigger, the
probability of a regime switch increases by about eight percentage points after four
quarters. Thus, the probability does not increase proportionally. Although the
difference is not big, we can conclude that positive news shock are more effective
in recessions than in expansions. It also does not seem to be a reversal in the
medium-run, once TFP increases. Negative news shocks increase the probability
of staying in a recession, but their effect is not as strong as when they hit in an
expansion.

By comparing the two figures, we can conclude that negative news in an ex-
pansion increase more the probability of going in a recession than the one of going
in an expansion of positive news in recession. The intuition for this result is also
found in Van Nieuwerburgh and Veldkamp (2006). The authors argue that in
a recession, uncertainty slows the recovery and make booms more gradual than
downturns.
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Figure 5: Regime transition probability change following a news shock. The four figures display
the change in the probability of switching from a recession to an expansion starting one year
after a news shock occured. The starred black line shows the behavior following a news shock
obtained with MRI, while the shaded light grey area represents the 95% bias-corrected confidence
interval. The confidence bands indicate the 5th and the 95th percentile of 1,000 MCMC draws.
The unit of the vertical axis is percentage points, and the unit of the horizontal axis is quarter.

5 Conclusions

The Great Recession and the slow recovery of the following years have raised the
question of what can turn the economy around back on the growth path. We
confirm the view of the news literature that news shocks may trigger a boom and
can initiate a transition from recession to expansion. But the response to a news
shock hitting the economy in recession is delayed and smaller than when it occurs
in normal times.

The type of news considered is about technological innovations. The idea
is that technological innovations are permanent, but they diffuse slowly. After
an innovation is conceived, it takes time for it to increase productivity in the
economy. However, market participants react immediately, and this may lead to
a boom, absent of any concurrent technological change.

To the best of our knowledge, the literature on news shocks has, so far, ne-
glected nonlinearities. In this paper, we test whether the reactions to this technol-
ogy related news shocks are state-dependent and/or asymmetric. By estimating a
LSTVAR, we find evidence of quantitative state-dependencies, mainly in the short-
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and medium-run. The asymmetry between good and bad news does not seem to
play an important role. The response to a news shock is in general larger in an
expansion than in a recession. We also find that using a linear model to analyze
the effects of news shocks one may underestimate their effect in an expansion while
overestimating it in a recession.

A key finding is that the impact contribution of the news shock to the variation
in all the variables of the model is state-dependent. While in expansion the results
are close to those for the linear model, in recessions, the news shock contributes
more on impact to the variance of the forward-looking variables, while the contri-
bution to output’s variance is almost nil. In the medium-run the shares converge
to similar values in both regimes.

We show that the probability of a regime-transition is strongly influenced by
the news shock. Our results indicate that strong bad news can make a boom end,
while similarly strong good news do not have the same power to take the economy
out of a recession.

Our intuition for the difference in the responses during the two regimes is the
stronger uncertainty of the economic agents about what to expect in the future
when they are in a recession. The result is that the same news shock leads to a
lower business cycle effect when it hits the economy in a recession compared to
occurring in expansion.

With this paper, we contribute to the empirical literature on STVAR models by
introducing a medium-run identification scheme to isolate a structural shock and
by estimating the parameters of two different transition functions of the model.
Several checks of our results provide support in favor of their soundness. Another
contribution is made to the empirical literature on news, by performing the analysis
in a nonlinear setting.

We believe that future research in the news literature should try to develop
a theoretical model, which can help explaining the mechanisms at work in this
nonlinear setting.
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Appendices

A Data

We employ US Data from 1955:1-2012:4.

Table 2: Statistics

Expansion∗ Recession∗

Mean Variance Mean Variance
dTFP 0.0028 0.0075 0.0039 0.0102
ICS 84.6619 12.7684 68.7171 14.8832
dY 0.0079 0.0093 -0.0108 0.0119
Infl 0.0274 0.0208 0.0465 0.0420
dSP 0.0138 0.0524 -0.0411 0.0932
dC 0.0070 0.0045 -0.0004 0.0084
dI 0.0126 0.0255 -0.0383 0.0355
H -7.5009 0.0501 -7.5239 0.0389
RR 0.0224 0.0254 0.0223 0.0334
NR 0.0498 0.0309 0.0688 0.0479

∗ Defined according to the NBER business cycle indicator.

dTFP: difference of log tfp adj. for capacity utilization (from Federal Reverse
Bank of San Francisco, following the method of Basu, Fernald, and Kimball (2006))

ICS: index of consumer sentiment (US consumer confidence - expectations
sadj/US University of Michigan: consumer expectations voln, USCCONFEE, M,
extracted from Datastream)

dY: difference of log real per capita output nonfarm (log of Real gross value
added: GDP: Business: Nonfarm, A358RX1Q020SBEA, Q, sa, U.S. Department
of Commerce: Bureau of Economic Analysis; adjusted for population: US popula-
tion, working age, all persons (ages 15-64) voln, USMLFT32P, M, retrieved from
Datastream)

Infl: inflation rate (4*log-difference of Nonfarm Business Sector: Implicit Price
Deflator, IPDNBS, Q, sa, U.S. Department of Labor: Bureau of Labor Statistics)

dSP: difference of log real per capita stock stock prices (log of S&P 500,
http://data.okfn.org/data/core//s-and-p-500♯data; divided by the price deflator
and population)

dC: log real per capita consumption (log of Personal consumption expendi-
tures: Nondurable goods, PCND, Q, sa, U.S. Department of Commerce: Bureau
of Economic Analysis + Personal Consumption Expenditures: Services, PCESV,
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Q, sa, U.S. Department of Commerce: Bureau of Economic Analysis; divided by
the price deflator and population)

dI: log real per capita investment (log of Personal consumption expenditures:
Durable goods, PCDG, Q, sa, U.S. Department of Commerce: Bureau of Economic
Analysis + Gross Private Domestic Investment, GPDI, Q, sa, U.S. Department
of Commerce: Bureau of Economic Analysis; divided by the price deflator and
population)

H: log per capita hours (log Nonfarm business sector: Hours of all persons,
HOANBS, Q, sa, U.S. Department of Labor: Bureau of Labor Statistics; divided
by population)

RR: real interest rate (nominal interest rate - annuylized inflation rate)
NR: nominal interest rate (Effective Federal Funds Rate, FEDFUNDS, M (av-

erages of daily figures), nsa, Board of Governors of the Federal Reserve System)

B Estimation of LSTVAR

B.1 Linearity Test

For the test of linearity in the parameters we will first assume that the variance-
covariance matrix Σt = Σ is constant. Later we will test for constancy of the
covariance matrix.

The null and alternative hypotheses of linearity can be expressed as the equality
of the autoregressive parameters in the two regimes of the LSTVAR model in
equation (1):

H0 : Π1 = Π2, (16)

H1 : Π1,j ̸= Π2,j, for at least one j ∈ {0, ..., p} . (17)

As explained in Teräsvirta, Tjøstheim, and Granger (2010) and van Dijk,
Teräsvirta, and Franses (2002), the testing of linearity is affected by the pres-
ence of unidentified nuisance parameters under the null hypothesis, meaning that
the null hypothesis does not restrict the parameters in the transition function (γF
and cF ), but, when this hypothesis holds true, the likelihood is unaffected by the
values of γF and cF . As a consequence, the asymptotic null distributions of the
classical likelihood ratio, Lagrange multiplier and Wald statistics remain unknown
in the sense that they are non-standard distributions for which analytic expressions
are most often not available.

Another way of stating the null hypothesis of linearity is H ′
0 : γF = 0. When H ′

0

is true, the location parameter c and the parameters Π1 and Π2 are unidentified.
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The proposed solution to this problem, following Luukkonen, Saikkonen, and
Teräsvirta (1988), is to replace the logistic transition function, F (γF , cF ; st−1), by
a suitable n-order Taylor series approximation around the null hypothesis γF = 0.

The LSTVAR model in equation (2) can be rewritten as:

Yt =Π′
1Xt + (Π2 − Π1)

′XtFt−1 + ϵt, (18)

where Xt is the matrix of lagged endogenous variables and a constant.
Since our switching variable is a function of a lagged endogenous variable, for

the LM statistic to have power, van Dijk, Teräsvirta, and Franses (2002) advise to
approximate the logistic function by a third order Taylor expansion. This yields
the auxiliary regression:

Yt =θ
′
0Xt + θ′1Xtst−1 + θ′2Xts

2
t−1 + θ′3Xts

3
t−1 + ϵ∗t (19)

where ϵ∗t = ϵt + R(γF , cF ; st−1)(Π2 − Π1)
′Xt, with R(γF , cF ; st−1) being the

remainder of the Taylor expansion.
Since θi, i = 1, 2, 3, are functions of the autoregressive parameters, γF and cF ,

the null hypothesis H ′
0 : γF = 0 corresponds to H ′′

0 : θ1 = θ2 = θ3 = 0. Under
H ′′

0 , the corresponding LM test statistic has an asymptotic χ2 distribution with
nm(mp+ 1) degrees of freedom.

Denoting Y = (Y1, ...., YT )
′, X = (X1, ...., XT )

′, E = (ϵ∗1, ...., ϵ
∗
T )

′, Θn =
(θ′1, ...., θ

′
n)

′, where n = 3 is the order of the Taylor expansion, and

Zn =


X ′

1s0 X ′
1s

2
0 · · · X ′

1s
n
0

X ′
2s1 X ′

2s
2
1 · · · X ′

2s
n
1

...
...

. . .
...

X ′
T sT−1 X ′

T s
2
T−1 · · · X ′

T s
n
T−1

 , (20)

we can write equation (19) in matrix form:

Y =XΘ0 + ZnΘn + E. (21)

The null hypothesis can be then also rewritten as: H ′′
0 : Θn = 0. For the test

we follow the steps described in Teräsvirta and Yang (2014a):

1. Estimate the model under the null hypothesis (the linear model) by regress-
ing Y on X. Compute the residuals Ẽ and the matrix residual sum of
squares, SSR0 = Ẽ ′Ẽ.
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2. Estimate the auxiliary regression, by regressing Y (or Ẽ) on X and Zn.
Compute the residuals Ê and the matrix residual sum of squares, SSR1 =
Ê ′Ê.

3. Compute the asymptotic χ2 test statistic:

LMχ2 = T (m− tr
{
SSR−1

0 SSR1

}
) (22)

or the F-version, in case of small samples:

LMF =
mT −K

JmT
LMχ2 , (23)

where K is the number of parameters, and J the number of restrictions.

Under H ′′
0 , the F-version of the LM test is approximately F (J,mT − K)-

distributed. We can reject the null hypothesis of linearity at all significance levels,
regardless of the type of LM test we perform.

Having assumed a priori that the potential nonlinearity in the vector system
is controlled by a single transition variable, we need to further test each equation
separately using the selected transition variable in order to check whether there
are any linear equations in the system. Under H ′′

0 , the LM test statistic for each
equation has an asymptotic χ2 distribution with n(p+1) degrees of freedom while
the F-version of the LM test is approximately F (J, T − K)-distributed, where
J = n(p+ 1) and K = (n+ 1)(p+ 1).

B.2 Estimation results of logistic model

Dependent variable: rec (=1 for a recessionary period, =0 otherwise)
Independent variables:

Switching variable
-3.1245***
(0.4806)

Intercept
-1.5038***
(0.2721)

No. of observations: 228
Log Likelihood: -48.977

LR χ2
(1): 104.25***

Pseudo R2: 0.5156
Significance levels : *10% **5% ***1%
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Figure 6: Initial transition function with estimated parameters obtained from a
logistic regression

B.3 MCMC procedure - MH algorithm

Our approach is, given the quasi-posterior densitiy p(Ψn) ∝ eL(Ψn), known up to
a constant, and a pre-specified candidate-generating (or proposal) density q(Ψ′

n |
Ψn), to construct chains of length N , (Ψ0

n, ...,Ψ
N
n ). We follow the forthcoming

steps:

1. Choose intial parameter value Ψ0
n.

2. For j = 1, ..., N :

(a) Generate Ψ′
n from q(Ψ′

n | Ψj
n) and u from U [0, 1].

(b) Compute the probability of move, α(Ψj
n,Ψ

′
n):

α(Ψj
n,Ψ

′
n) = min

{
p(Ψ′

n)q(Ψ
′
n | Ψj

n)

p(Ψj
n)q(Ψ

j
n | Ψ′

n)
, 1

}
(24)
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(c) Update Ψj+1
n from Ψj

n, using:

Ψj+1
n =

{
Ψ′
n if u ≤ α(Ψj

n,Ψ
′
n);

Ψj
n otherwise.

(25)

3. Return the values (Ψ0
n, ...,Ψ

N
n ).

To implement the MH algorithm, it is essential to choose suitable starting
parameter values, Ψ0

n, and candidate-generating density, q(Ψ′
n | Ψn).

The importance of the starting parameter values is given by the fact that in
case Ψ0

n is far in the tails of the posterior, p(Ψn), MCMC may require extended
time to converge to the stationary distribution. This problem may be avoided by
choosing a starting value based on economic theory or other factors.

The starting values for the transition function parameters are obtained by
a logistic regression of the NBER business cycle on the transition variable. The
starting values for the covariance matrices (Σ1, Σ2) are obtained from the auxiliary
regression 19 in Appendix B.1, where it is altered by ε > 0 for the second.

The choice of the candidate-generating density, q(Ψ′
n | Ψn), is also important

because the success of the MCMC updating and convergence depends on it. Al-
though the theory on how this choice should be made is not yet complete (Chib
and Greenberg (1995)), it is usually advised to choose a proposal density that
approximates the posterior density of the parameter. However, this approach is
hard to implement when the parameter set contains many elements, so in prac-
tice ad- hoc initial approximations, such as a N(0, 1) proposal density may be
used and subsequently improved on using the MCMC acceptance rates. There-
fore, this being the case in our setting, we use a candidate-generating density,
q(Ψ′

n | Ψn) = f(|Ψ′
n −Ψn|), with f being a symmetric distribution, such that:

Ψ′
n = Ψn + ψ, ψ ∼ f (26)

Since the candidate is equal to the current value plus noise, this case is known
in the literature as the random walk MH chain. We choose f to be a multivariate
normal density, N(0, σ2

ψ), with σ
2
ψ being a diagonal matrix.

Note that since f is symmetric, q(Ψ′
n | Ψn) = q(Ψn | Ψ′

n) and the probability

of move only contains the ratio p(Ψ′
n)

p(Ψj
n)

= eL(Ψ′
n)

eL(Ψ
j
n)
.

What remains to be done at this stage is to specify a value for the standard
deviation, σψ. Since σψ determines the size of the potential jump from the current
to the future value, one has to be careful because if it is too large it is possible that
the chain makes big moves and gets far away from the center of the distribution
while if it is too small the chain will tend to make small moves and take long
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time to cover the support of the target distribution. To avoid such situations, we
calibrate it to one percent of the initial parameter value, as adviced in Auerbach
and Gorodnichenko (2012).

For the normal proposal density, the acceptance rate depends heavely on σψ.
Hence, in order to make sure we obtain an acceptance rate between 25% and 45%,
as indicated in Roberts, Gelman, and Gilks (1997), we adjust the variance of the
proposal density every 500 draws for the first 20,000 iterations.

We use N=120,000, out of which the first 20,000 draws are discarded, while
the remaining are used for the computation of estimates and confidence intervals.

B.4 Constancy of the Error Covariance Matrix

Yang (2014) proposes a test for the constancy of the error covariance matrix ap-
plicable to smooth transition vector autoregressive models. It is based on the
assumption that the time-varying conditional covariance matrix Σt can be decom-
posed as follows:

Σt = PΛtP
′, (27)

where the time-invariant matrix P satisfies PP ′ = Im, Im being an identity matrix,
and Λt = diag(λ1t, . . . , λmt) which elements are all positive.

Under this assumption, the log-likelihood function for observation t =, . . . , T
based on vector Gaussian distributed errors is:

logLt = c− 1

2
log |Σt| −

1

2
utΣ

−1
t u′t

= c− 1

2
log |Λt| −

1

2
wtΛ

−1
t w′

t

= c− 1

2

m∑
i=1

(log λit + w2
itλ

−1
it )

where wt = utP .

The null hypothesis to be tested is then:

H0 : λit = λi, i = 1, . . . ,m (28)

The LM test given in Yang (2014) is based on the statistic:

LM =
1

2

m∑
i=1

( T∑
t=1

g̃itz̃
′
it

)(
T∑
t=1

z̃itz̃
′
it

)−1( T∑
t=1

g̃itz̃it

) . (29)
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To test for constancy of the error covariance matrix, first, the model has to be
estimated under the null hypothesis assuming the error covariance matrix to be
constant over time. The residuals of this model ũt are collected and the empirical
covariance matrix Σ̃t is computed and decomposed into Σ̃t = P̃ Λ̃tP̃

′. In a next
step, the transformed residuals w̃t = ũtP̃ and g̃it = w̃2

it/λ̃i − 1 are computed. For
each equation, an auxiliary regression of g̃it on z̃it is run. z̃it is chosen to be a first
or higher order approximation of the transition function. In the case of the logistic
smooth transition VAR and a first order approximation z̃it may be a function of
time zit = [t/T1] or the switching variable. The LM statistic is then computed as
follows:

LM =
m∑
i=1

T
SSGi −RSSi

SSGi

, (30)

where SSGi is the sum of squared g̃it, and the RSSi the corresponding residual
sum of squares in the auxiliary regression. Under regularity conditions, the LM
statistic is asymptotically χ2 distributed with degrees of freedom equal to the
number of restrictions.

Yang (2014) shows that this test exhibits high power and size even if the as-
sumption from equation (27) does not hold and performs especially well in the
case of smooth transition VARs.

In our case, the null hypothesis of a constant error covariance matrix is clearly
rejected.

C Fundamentalness Test

C.1 Procedure

1. Take a large dataset Qt, capturing all of the relevant macroeconomic infor-
mation.We use a dataset which contains 87 quarterly macroeconomic series
for the U.S. from 1955Q1 to 2012Q4.

2. Set a maximum number of factors p and compute the first p principal com-
ponents of Qt. The authors suggest to choose p between 4 and 10. We set
the maximum number of factors p = 10 and compute the first p principal
components of the dataset. We use the principal components to obtain the
unobserved factors.

3. Test whether the estimated shock is orthogonal to the past of the principal
components, p (we use lags 1, 4, and 6), by regressing the critical structural
shock (news shock) on the past of the principal components and performing
an F-test of the null hypothesis that the coefficients are jointly zero.
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C.2 Results

Table 3: Linear model specifications

TFP ICS Output Inflation SP Consumption Hours
S1 × ×
S2 × ×
S3 × × × × ×
S4 × × × × × × ×

Table 4: Results of the fundamentalness test for SRI

Principal components
Specification lags 1 2 3 4 5 6 7 8 9 10

S1
1 0.45 0.03 0.07 0.11 0.13 0.05 0.09 0.13 0.13 0.10
4 0.96 0.35 0.65 0.73 0.75 0.58 0.50 0.70 0.45 0.19
6 0.97 0.40 0.51 0.47 0.33 0.25 0.20 0.05 0.06 0.05

S2
1 0.58 0.08 0.16 0.25 0.32 0.33 0.34 0.28 0.37 0.38
4 0.76 0.61 0.67 0.60 0.73 0.78 0.83 0.60 0.64 0.68
6 0.47 0.58 0.83 0.81 0.93 0.94 0.92 0.60 0.65 0.76

S3
1 0.77 0.95 0.85 0.88 0.91 0.93 0.92 0.91 0.94 0.94
4 0.95 0.99 0.96 0.87 0.95 0.97 0.96 0.75 0.71 0.71
6 0.54 0.91 0.98 0.91 0.98 0.98 0.96 0.67 0.67 0.79

S4
1 0.83 0.91 0.79 0.87 0.93 0.94 0.94 0.90 0.93 0.96
4 0.93 0.99 0.97 0.90 0.96 0.97 0.97 0.81 0.75 0.78
6 0.61 0.94 0.98 0.93 0.98 0.98 0.97 0.69 0.70 0.83

Each value from the table reports a p-value of the F-test obtained from the regression
of the news shock estimated using specifications S1 to S4 on 1,4 and 6 lags of the first
difference of the first 10 principal components. The news shock is identified as the shock
on the second variable (SP for S1 and ICS for S2-S4) that does not move TFP on impact.
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Table 5: Results of the fundamentalness test for MRI

Principal components
Specification lags 1 2 3 4 5 6 7 8 9 10

S1
1 0.42 0.02 0.06 0.10 0.11 0.05 0.09 0.13 0.13 0.12
4 0.92 0.31 0.62 0.74 0.78 0.63 0.50 0.69 0.45 0.22
6 0.92 0.37 0.44 0.44 0.28 0.27 0.19 0.06 0.06 0.05

S2
1 0.75 0.08 0.15 0.23 0.25 0.25 0.29 0.22 0.29 0.31
4 0.78 0.62 0.53 0.52 0.68 0.70 0.71 0.43 0.52 0.58
6 0.43 0.57 0.76 0.77 0.90 0.92 0.89 0.55 0.64 0.76

S3
1 0.74 0.89 0.76 0.73 0.80 0.85 0.82 0.76 0.82 0.87
4 0.81 0.98 0.97 0.62 0.81 0.88 0.64 0.16 0.12 0.15
6 0.21 0.69 0.91 0.58 0.73 0.82 0.55 0.16 0.15 0.27

S4
1 0.79 0.95 0.79 0.90 0.92 0.90 0.88 0.74 0.80 0.81
4 0.82 0.98 0.98 0.64 0.81 0.71 0.52 0.18 0.13 0.21
6 0.65 0.94 0.98 0.73 0.86 0.79 0.57 0.19 0.18 0.29

Each value from the table reports a p-value of the F-test obtained from the regression
of the news shock estimated using specifications S1 to S4 on 1,4 and 6 lags of the first
difference of the first 10 principal components. The news shock is identified as the shock
that does not move TFP on impact and has maximal effect on TFP at horizon 40.

D Estimation of GIRF and GFEVD

D.1 Estimation of GIRF with SRI

The GIRFs are estimated by simulation for eight different cases:

case regime magnitude sign

1 Expansion σ +
2 Expansion 3σ +
3 Expansion σ -
4 Expansion 3σ -
5 Recession σ +
6 Recession 3σ +
7 Recession σ -
8 Recession 3σ -
σ denotes the standard deviation of the news shock.

The simulation for a case starts by choosing a period t and its corresponding
history Ωt−1 from the sample that satisfies the regime criterium of that case. We
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define a period as being a recession if F (γF , cF ; st−1) ≥ 0.5 and an expansion
otherwise.

The simulation of the GIRF

GIRF (h, ϵt,Ωt−1) = E
[
Yt+h | ϵδt ,Ωt−1

]
− E [Yt+h | Ωt−1] (31)

is performed in two steps by simulating E
[
Yt+h | ϵδt ,Ωt−1

]
and E [Yt+h | Ωt−1] indi-

vidually and then taking the difference.

Step 1: Simulation of E [Yt+h | Ωt−1]
For a chosen period and history, conditional expected values of Yt+h are sim-

ulated up to horizon h given the model. For the first p simulations also data
contained in the history is used. Every period the model is shocked randomly by

ϵt+h ∼ N (0,Σt+h).

The shocks are drawn from a normal distribution with variance

Σt+h = G(γG, cG; st+h−1)Σ1 + (1−G(γG, cG; st+h−1))Σ2.

The variance is history-dependent through the switching variable and adjusts ev-
ery simulation horizon.

Step 2: Simulation of E
[
Yt+h | ϵδt ,Ωt−1

]
In the first period, only a specific shock affects the model. ϵδt = AGt+hei where

AGt+h is the orthogonalization of Σt+h according to the identification scheme. ei
is a vector of zeros with the ith position being determined by the case (Sign:
positive/negative, Magnitude: σ/ 3σ). In the case of SRI, the news shock is
identified as the second shock. For the rest of the horizon h ≥ 1, the model is
shocked with randomly drawn shocks ϵt+h ∼ N (0,Σt+h) according to Step 1 .

For each period we perform B simulations and then average over them. Since
among the periods, we have about eight times more defined expansionary than
recessionary periods, for each recession, we simulate B = 8000 expected values up
to horizon h given the model, the history and the vector of shocks, while for an
expansionary history we simulate for B = 1000.

To analyze the results, we sort the GIRFs according to some criteria such
as regime, sign, or magnitude of the shocks and we scale them in order to be
comparable. Then, to obtain, for example, the effect of a small positive shock in
recession, we average over the chosen GIRFs fulfilling all these criteria.

D.2 Estimation of GIRF with MRI

For the estimation of GIRF with the MRI, first, the rotation matrix that maxi-
mizes the generalized forecast error variance decomposition at horizon 40 has to
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be identified and, second, the GIRF have to be estimated given the rotation matrix.

Step 1:
The news shock is identified as the shock that has no impact effect on TFP, but
maximizes the generalized forecast error variance decomposition at horizon 40.
The rotation matrix is found by minimizing the negative of the GFEVD at hori-
zon 40. The estimated covariance matrices for both regimes are used as starting
values. They are rotated to set the restriction that the news shock has no impact
effect.

Step 2:
The GIRF are estimated as described in Appendix D.1. The only difference is

that the orthogonalization of the history-dependent covariance matrix is approxi-
mated by

Σt+h = AGt+hA
G′

t+h

AGt+h = G(γG, cG; st+h−1)A1 + (1−G(γG, cG; st+h−1))A2 (32)

where Σ1 = A1A
′
1 and Σ2 = A2A

′
2.

The specific shock ϵδt = AGt+hei where A
G
t+h is the orthogonalization of Σt+h

according to the identification scheme. ei is a vector of zeros with the ith position
being determined by the case (Sign: positive/negative, Magnitude: σ/ 3σ). Under
MRI, the unanticipated productivity shock can be identified as the first shock and
then the news shock as any other shock.

D.3 Confidence Bands

To estimate confidence bands, we draw D = 1000 positions from the results of the
MCMC routines. For each position we estimate GIRFs according to the identifi-
cation scheme. The confidence bands are then the respective quantiles of the set
of estimated GIRFs from the draws.

D.4 Generalized Forecast Error Variance Decomposition

The estimation of the GFEVD is based on the estimation of generalized impulse
response functions.
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λj,i,Ωt−1(h) =

∑h
l=0GIRF (l, δit,Ωt−1)

2
j∑K

i=1

∑h
l=0GIRF (l, δit,Ωt−1)2j

(33)

We perform simulations to obtain GIRFs for all six shocks by adjusting ϵδt for
a given horizon, shock and variable. To obtain the numerator of λj,i,Ωt−1(h), the
squared GIRF just have to be summed up to horizon h. For the denominator the
squared GIRF are in addition summed over all shocks K.

E Results in the linear setting
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Figure 7: Comparison of the news and the confidence shocks using a scatterplot. The confidence
shock is identified using a SRI which assumes that the confidence shock affects ICS on impact
but not TFP. Under a MRI, the news shock is defined as the shock that does not move TFP on
impact but has maximal effect on it at H = 40.
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Figure 8: Comparison of news shock and confidence shock in a linear model.The red solid
line shows the response to the news shock, while the green dotted line is the response to the
confidence shock. The shaded region is the 95 percent confidence interval for the news shock.
The unit of the vertical axis is percentage deviation from the case without the shock (for ICS it
is points), and the unit of the horizontal axis is quarter.
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Figure 9: Comparison of news shock and confidence shock in a linear seven variables model.
The red solid line shows the response to the news shock, while the green dotted line is the
response to the confidence shock. The shaded region is the 95 percent confidence interval for
the news shock. The unit of the vertical axis is percentage deviation from the case without the
shock (for ICS it is points), and the unit of the horizontal axis is quarter,

50



F Results in the nonlinear setting

1950 1960 1970 1980 1990 2000 2010 2020
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1950 1960 1970 1980 1990 2000 2010 2020
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 10: Comparison of the transition function for the mean equation - F (top), and the
transition function for the variance equation - G (bottom), with average parameter values ob-
tained from the MCMC iterations (γF = 3.00, cF = −0.61, γG = 6.31, cG = −0.52). The black
line is the probability of a recession given by the logistic function, while the grey bars define the
NBER identified recessions. The unit of the horizontal axis is quarters, while the unit of the
vertical axis is percent in decimal form.
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Figure 11: Stability check for the five processes. Each plot displays the paths of realizations (in
first differences) from the estimated model with noise switched off, starting from a large number
of initial points from both regimes.
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Figure 12: Generalized impulse response functions to a positive small confidence shock under
SRI. SRI assumes that the confidence shock affects ICS on impact but not TFP. The starred black
line is the point estimate in recession, and the solid blue line is the point estimate in expansion.
The dashed black lines define the 95% bias-corrected confidence interval for recession, while the
shaded light grey area represents the 95% bias-corrected confidence interval for expansion. The
confidence bands indicate the 5th and the 95th percentile of 1,000 MCMC draws. The unit of
the vertical axis is percentage deviation from the case without the shock (for ICS it is points),
and the unit of the horizontal axis is quarters.
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Figure 13: Generalized impulse response functions to a positive small news shock under SRI2.
SRI2 assumes that the news shock affects SP on impact but not TFP. The starred black line
is the point estimate in recession, and the solid blue line is the point estimate in expansion.
The dashed black lines define the 95% bias-corrected confidence interval for recession, while the
shaded light grey area represents the 95% bias-corrected confidence interval for expansion. The
confidence bands indicate the 5th and the 95th percentile of 1,000 MCMC draws. The unit of
the vertical axis is percentage deviation from the case without the shock (for ICS it is points),
and the unit of the horizontal axis is quarter.
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Figure 14: Generalized impulse response functions to news shocks of different signs and magnitudes. The starred black line is the point
estimate in recession, and the solid blue line is the point estimate in expansion. The dashed black lines define the 95% bias-corrected
confidence interval for recession, while the shaded light grey area represents the 95% bias-corrected confidence interval for expansion.
The unit of the vertical axis is percentage deviation from the case without the shock (for ICS it is points), and the unit of the horizontal
axis is quarter.
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Figure 15: Generalized impulse response functions to confidence shocks of different signs and magnitudes. The starred black line is the
point estimate in recession, and the blue line is the point estimate in expansion. The dashed black lines define the 95% bias-corrected
confidence interval for recession, while the shaded light grey area represents the 95% bias-corrected confidence interval for expansion.
The unit of the vertical axis is percentage deviation from the case without the shock (for ICS it is points), and the unit of the horizontal
axis is quarter.
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Table 6: Generalized Forecast Error Variance Decomposition. The numbers indicate the percent
of the forecast error variance of each variable at various forecast horizons explained by the
unanticipated TFP shock together with the anticipated (news) TFP shock identified with the
MRI scheme, in expansions, recessions, and the linear model.

Impact One year Two years Ten years

Total TFP Linear 100.00 95.17 94.40 97.75
Expansion 96.58 82.88 77.64 74.09
Recession 99.69 91.79 86.27 86.32

Total confidence Linear 59.60 75.30 78.31 78.50
Expansion 48.70 75.33 80.04 75.46
Recession 94.60 95.50 95.59 91.77

Total output Linear 33.83 67.37 84.12 93.09
Expansion 33.27 60.59 78.22 79.13
Recession 96.16 96.46 95.64 90.44

Total inflation Linear 45.69 42.49 45.01 52.24
Expansion 55.51 56.75 59.32 59.30
Recession 99.10 97.36 96.94 94.02

Total stock prices Linear 19.81 33.41 42.16 64.68
Expansion 14.67 39.62 53.87 67.51
Recession 96.64 96.81 96.10 91.95
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Table 7: Generalized Forecast Error Variance Decomposition for the confidence shock (SRI).
The numbers indicate the percent of the forecast error variance of each variable at various forecast
horizons explained by the confidence shock in expansions, recessions, and the linear model.

Impact One year Two years Ten years

TFP Linear 0 0.38 2.16 23
Expansion 0 4.62 8.76 27.98
Recession 0 23.56 25.77 46.7

Confidence Linear 96.46 88.46 83.29 68.38
Expansion 98.59 76.35 65.31 44.29
Recession 92.51 54.46 51.88 43.29

Output Linear 4.61 28.14 33.79 33.1
Expansion 3.29 20.83 29.43 28.14
Recession 0.63 24.83 43.48 47.73

Inflation Linear 2.05 4.26 4.93 5.92
Expansion 0.64 5.5 7.61 13.3
Recession 52.28 45.78 45.06 43.58

Stock Prices Linear 16.32 16.18 17.89 17.32
Expansion 14.76 16.29 20.68 20
Recession 49.48 52.12 52.83 48.17
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