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ABSTRACT: This paper studies the volatility in financial markets’ returns. First, the 

volatility is extracted from a stochastic volatility model. Second, various methods for 

persistence check are used. The results suggest that mutual information might be a valid 

alternative for persistence checking: significant deviations of mutual information from zero 

can be viewed as an evidence of long-run memory. We illustrate the case of Bucharest Stock 

Exchange’s BET index, which displays a significant persistence in returns. The mutual 

information approach shows that volatility becomes more persistent during functional 

instability periods of the market. This result is consistent with the other methods applied.  
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1. Introduction 

As the recent financial and real turmoil period has painfully pointed out, real world financial 

markets may be characterized by periods with substantial functional instability, when these are 

placing themselves ‘far from equilibrium’. The negative consequences of such periods are not 

only confined within market borders. Rather, by specific contagion mechanisms, local 

perturbations might be translated to other markets and / or sectors of the economic system. 

Hence, as Poterba and Summers (1986:1142) argue: “explaining the dramatic intertemporal 

variation in real stock market prices is a fundamental problem of financial economics”. 

Three main classes of approaches are usually involved in highlighting persistence (see also 

Rea et al., 2013). The first one is linked to the self-similarity parameter (Hurst exponent). The 

second one is related to the fractional integration parameter, d, in the generalization of the 

Box-Jenkins ARIMA (p,d,q) models. The third one is placed in the frequency domain 

(Geweke and Porter-Hudak, 1983; Reisen, 1994) here it can be included, as well, the wavelet-

based estimators (Jensen, 1999; Whitcher and Jensen, 2000; Hsu, 2006; Boubaker and Péguin-

Feissolle, 2013). However, as a methodological stand, we argue that ‘persistence’ is a 

multidimensional concept. Thus, one cannot rely, in the estimation of the persistence degree, 

on a single class of methods. Instead, several tools should be employed in order to capture the 

various features of information transmission underlying mechanisms. 

In the study of persistence in financial markets’ evolutionary paths, these methods are usually 

applied at the level of financial assets’ prices or market indexes. Nevertheless, the various 

perturbations affecting these markets originate from both inside and outside. Hence, a more 

detailed analysis should distinguish between persistence in long-run trends (hysteresis effects 

and market rigidities, leading to misalignments from steady-state market dynamics) and, 

respectively, persistence in volatility (systematic deviations from the steady-state market path, 

under the impact of imperfect information and its use mechanisms). So, instead of assessing 



the presence of long-memory in the observed financial assets’ prices, one may adopt a two-

steps approach. As a preliminary step, the volatility can be extracted from these prices or, in a 

dynamic setting, from their associated returns. As a second step, various techniques for 

emphasising the persistence in the estimated volatility series can be applied.  

The first type of long-memory might be justified by the occurrence of endogenous shocks 

connected to structural changes in the fundamental determinants of demand and supply, or to 

market’s institutional and operational framework. Such changes may lead to a decoupling 

process between demand and supply, which can be shown by regime-shifts in long-run trends. 

The second type may be related to exogenous information shocks: if the market displays a 

certain degree of information inefficiency (the information is costly, asymmetrically 

distributed, incomplete or only partial relevant; the algorithms used by investors to deal with 

this information are only partial efficient), then the newly arrived information is not 

‘instantaneous’ incorporated in prices. In such cases, the portfolio adjustment processes might 

take time and market might move in areas that are ‘far from equilibrium’. If the market is not 

able to absorb information in the current period, then multi-periodic perturbations from the 

long-run equilibrium may occur and prices’ volatility may become persistent (even if nothing 

changes at the level of demand and supply fundamentals and long-run trends). 

Long-memory in volatility can be viewed as an evidence of market participants’ inability to 

gather and use the available information (which itself is not necessary a ‘perfect’ one) and, 

hence, it can be linked to the issue of market (in)efficiency. 

A standard approach in capturing volatility is represented by the ARCH-GARCH family 

models. However, empirical evidences such as Patton and Sheppard (2013) show that future 

volatility is more related to the volatility of past negative returns than to that of positive 

returns; this effect is stronger than that implied by standard asymmetric GARCH models. 

Also, Todorov and Tauchen (2011) find that jumps in volatility and price levels frequently 



occur together, are strongly dependent, and have an opposite sign. Other stylized facts include 

unexpected crashes, volatility clustering, ‘smile’ patterns in financial assets’ prices or leverage 

effects. 

Accounting for such market features, Duffie et al. (2000) advances a framework allowing for 

jumps in returns, stochastic volatility, as well as jumps in returns and volatility. Bayesian tests 

for stochastic volatility and jumps are proposed, for instance, by Ignatieva et al. (2009), Li et 

al. (2012), Yong and Zhang (2014), Liu and Li (2014). Such studies provide additional 

empirical support for persistence in volatility. Carnero (2004) finds that the relationship 

between kurtosis, persistence of shocks to volatility, and first-order autocorrelation of squares 

is different in GARCH and autoregressive stochastic volatility (ARSV) models. This 

difference can explain why the persistence estimated is usually higher in GARCH than in 

ARSV models and why Gaussian ARSV models seem to be adequate, whereas GARCH 

models often require leptokurtic conditional distributions. Also, the models with Markov 

regime changing state equations (SVMRS) proposed by Hwang et al. (2007)   suggest that 

volatility is far less persistent and smooth than the conventional GARCH or stochastic 

volatility. Even more, a persistent short-run regime is more likely to occur when volatility is 

low, while far less persistence is possible to be observed in high volatility regimes. Messow 

and Krämer (2013)  shows that structural changes in stochastic volatility models induce 

spurious persistence. Such implied persistence does not tend to unify with given size of the 

structural change and increasing sample size. In the case of foreign exchange market, Berger et 

al. (2009) finds that the time variation in the market's sensitivity to information is, at least, as 

relevant in explaining the persistence of volatility, as the rate of information arrival itself. 

Furthermore, one can argue that a financial market is not a closed system. Rather, through 

various financial and real flows, markets are interrelated and there might be significant 

volatility pass-through processes. For instance, Vo (2011) models the volatility of stock and 



oil futures’ markets, by using the multivariate stochastic volatility structure and finds that there 

is a inter-market dependence in volatility (in the sense that innovations that hit either market 

can affect the volatility in the other market).      

Based on such arguments, we seek to contribute by a three-fold analysis. First, we consider the 

case of Bucharest Stock Exchange, an emergent market with fast institutional and structural 

changes and functional instability. For this market, there are strong reasons to expect 

endogenous and exogenous causes of regime-shifts, not only in trends, but also in volatility. 

Second, we model its BET index time-varying volatility by involving a stochastic volatility 

model. Third, we check for long-run memory, at the level of estimated volatility, based on 

some of the above mentioned approaches. Supplementary, we explore the possibilities of 

involving mutual information as an alternative approach to persistence analysis. One 

significant advantage of this is related to that, unlike the autocorrelation function, mutual 

information takes into account nonlinear correlations as well. 

The paper is organized as follows. In Section 2, we describe the considered stochastic 

volatility model and several features of mutual information. Section 3 shows the main statistics 

of BET index market. Section 4 reports on time-varying volatility estimates and proceeds to 

check for persistence at its level,by involving the specific frameworks for Hurst analysis, 

Multi-Fractal De-trended Fluctuation analysis, the fractional (“memory”) parameter and, 

respectively, the average mutual information index; while the last section concludes.   

 

2. Methodology 

2.1. A stochastic volatility model  

As Jacquier et al. (2004) argues, the stochastic volatility models offer a ‘natural alternative’ to 

the GARCH family in capturing the time-varying volatility. One of their main advantages 

consists in that these allow the separation of error processes for the conditional mean and, 



respectively, conditional variance. Moreover, such models are able to reflect the volatility 

clustering processes and account for heavy-tailed dynamics. Indeed, as Bentes et al. (2008) 

and Chan and Hsiao (2014) note, long memory and volatility clustering are two stylized facts 

frequently related to financial markets. Such phenomenon can be directly linked to market’s 

agent heterogeneity: institutional versus individual, informed versus non-informed, long-term 

traders versus short-term traders, risk takers versus risk aversion agents, autochthonous versus 

foreign agents and so on. It can be reasonable presumed that such heterogeneity is high in the 

case of an emergent market. Thus, we shall consider such model in order to describe the 

volatility behaviour. 

Let yt be the vector of Romanian capital market’s index (BET) log-returns. In order to account 

for the potential presence of extreme values in data, we fit the data using a stochastic volatility 

model with Student-t errors. In addition, we allow for potential persistence through an MA (1) 

error process, such as: 
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Meanwhile, the distribution for the scale mixture variables is given by: 

     / 2, / 2 3t IG  │  

  stands for the Student-t distribution degree of freedom parameter. Independent prior 

distributions are assumed for  
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Additionally, let H  be a T ×T lower triangular matrix with ones on the main diagonal, with 



1   on first lower diagonal,  2  on second lower diagonal, and so forth. Also, let 
1z H y

  . 

Then: 
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A sampler procedure can be applied to z to sample the full conditional distributions of 

2, , , , hh h     h, , . Such a sampler can be build based on band matrix algorithms and it can 

incorporate an evaluation of the likelihood function that exploits the band structure of the 

covariance matrix of y instead of involving the conventional methods based on the Kalman 

filter. Also, the density of z can be used for a Metropolis-Hastings step in order to simulate the 

full conditional distribution of   (see for more details [15 and Chan, 2015). 

 

2.2. The mutual information based assessment of persistence  

The mutual information between two random variables X and Y can be defined in terms of 

their joint probability distribution p(X,Y)as: 
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Since  ; 0I X Y  only when p(X,Y)= p(X)p(Y), mutual information will be bigger than zero 

when X and Y exhibit any co-dependence, regardless of how nonlinear that dependence is. 

Stronger the mutual dependence, larger the value of  ;I X Y . In other words, mutual 

information measures how much the uncertainty of Y is reduced if X has been observed. If 

X=Y, then I[X;Y]=H[X]. Hence, entropy can be viewed as a measure of the ‘self-information’ 

contained by X. Of course, entropy does not capture the time information flow between current 

period t and previous periods t-1, t-2,…, t-k. It rather describes the information content of 

variable X at time t. For instance, time delayed mutual information was suggested by Fraser 

and Swinney (1986) as a tool to determine a reasonable time delay in phase-portrait 



reconstruction for time series data. We aim to use that specific capability of the mutual 

information as to -valuate the persistence in volatility. More exactly, we argue that such 

persistence can be revealed by significant values of mutual information between current and 

lagged series of volatility. If there are such significant levels of mutual information, then it can 

be presumed that information shocks are not absorbed on short-run and they propagate over 

specific lags. 

However, as Kinney and Atwal (2014) notes, the estimation of mutual information from finite 

continuous data is a non-trivial task. The main difficulty lies in the estimation of the joint 

distribution from a finite sample of N observations. One of the simplest solutions is to “bin” 

the data. If X   contains the delayed values of X (with lag τ), this approach implies to 

superimpose a rectangular grid on the ,X X   
scatter plot and then assign each X  value ( X   

value) to the column bin (row bin) into which it falls. With this purpose, the following 

estimate is obtained: 
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in their intersection, respectively. Thus, the probabilities are obtained as follows: ( ) ( ) /p i n i N

, ( ) ( ) /p j n j N   and ( , ) ( , ) /p i j n i j N  . Estimates of mutual information based on this 

approach are commonly called ’naive’ estimates (Paninski, 2003). Such estimates might 

systematically overestimate the mutual information. Still, Kinney and Atwal (2014) 



emphasizes that this problem is less severe in large datasets, since the joint probability can be 

determined to arbitrary accuracy, as the number of observations increases to infinity and the 

width of the bins decreases to zero. 

 

3. Bucharest Stock Exchange BET index data 

The BET index reflects the 10 most liquid companies listed on Bucharest Stock Exchange’s 

regulated market segment, excluding financial investment companies (SIFs). It is an index 

weighted by free float capitalization. The maximum weight of each share is 20%. The main 

selection criterion is the company’s liquidity. Since 2015, several supplementary requirements 

of transparency, quality reporting and communication with investors have been imposed. 

The analysis covers a time span between 10 November 1997 and 10 April 2015 (daily data; 

close values; 4352 observations). This span covers the 2007-2010 turmoil period as well as 

some key events, such as changes in the legal and supervisory framework, the merger with the 

Romanian Association of Securities Dealers Automated Quotation market (RASDAQ),  the 

Bucharest Stock Exchange self-listing in 2010, the first dual listing (in the case of Erste Group 

Bank AG, which is listed on both Vienna Stock Exchange and Prague Stock Exchange),  the 

launch of a structured financial instruments segment and of a new Alternative Trading System 

(ATS), so on  (see Fig. 1.). 

[Insert Fig. 1. about here] 

Despite its relatively fast pace, the Romanian capital market remains, in terms of market 

capitalization, one of the smallest among Central and Easter European markets; reflecting the 

insufficient performances at the macroeconomic level (see Table 1). Also, the post 2007 period 

was characterised by an increasing financial integration with European Union’s developed 

markets. Hence, Bucharest Stock Exchange became more vulnerable to exogenous shocks as 

the recent financial and real turmoil illustrates. 



[Insert Table 1 about here] 

The main statistics of BET levels and log-returns are reported in Table 2. The index is 

platykurtic distributed and some right fat-tails effects may be detected. The distribution of 

returns appears to be leptokurtic and skewness values indicate the presence of left-tails effects. 

The values of Jarque-Bera tests as well as the values of more formal Lilliefors test (an 

adaptation of Kolmogorov–Smirnov test), the Cramér–von Mises criterion, Watson test as well 

as the Anderson–Darling test (see D’Agostino and Stephens, 1986, for a presentation of these 

tests) are clearly rejecting the null of both levels and returns’ normal distribution. The unit 

roots test of Zivot and Andrews (1992), which accounts for the existence of a potential 

structural break at the level of data, indicates that BET index is generated by a process with 

stationary increments. 

We further focus on estimating the log-returns volatility into the described framework of the 

stochastic volatility model. 

[Insert Table 2 about here] 

 

4. Results and comments 

4.1. Time-varying volatility estimation 

We use 100000 draws from the posterior distribution, after a burn-in period of 10000. Table 3 

reports the posterior means, standard deviations and quantiles of the model parameters. The 

average daily return over the sample period is estimated to equal 0.030%, while its true value 

is 0.021%.The posterior mean of the MA(1) coefficient   is 0.133 with a 90% credible 

interval (0.108,0.159) indicating some persistence in the errors. 

[Insert Table 3 about here] 

Also, the degree of freedom parameter  is estimated to be about 27.271. Such value suggests 

that the error distribution displays heavier tails than those specific to a Gaussian distribution. 



The left panel of Fig. 2 depicts the estimate of the marginal density  p y│ .This density plot 

indicates that values greater than 0.2 are highly unlikely. The right panel shows the density 

plot of  p y│ . Its largest portion ranges between 20 and 40. This may be seen as an 

additional evidency for the relevance of an Student-t error distribution. 

[Insert Fig. 2. about here] 

Fig. 3 depicts the posterior means and quantiles of the time-varying standard deviation

 exp / 2th . This indicates that the estimated volatility is characterized by a significant time-

variation. Particularly, it displays peaks in November 1998 (when it goes around 1.19%), 

October 2010 (with a fluctuation around 2.21%), January-June 2009 (when it stays around 

1.24%) or May-June 2010 (when it goes beyond 1.39%). These peaks are associated to 

structural, institutional and functional changes of the Romanian capital market, after the re-

opening of the Bucharest Stock Exchange in 1995, as well as to the 2007-2010 financial and 

real turmoil. 

[Insert Fig. 3. about here] 

Table 4 reports the main statistics for the estimated time-varying volatility. The distribution 

parameters show that the estimated volatility does not display a normal distribution. The unit 

roots (with single structural break) test of Zivot and Andrews (1992) rejects the null of unit 

root with a structural break in both intercept and trend. 

[Insert Table 4 about here] 

As one cannot rely on a single unit root test, Table 5 reports various unit root tests (see for a 

description of such tests: Banerjee et al., 2003; Said and Dickey, 1984; Schwert, 1989) 

performed by using the R interface developed by Wuertz (2014). 

The null hypothesis of the presence of unit roots in volatility is rejected by Augmented 

Dickey–Fuller, Elliott–Rothenberg–Stock, Phillips–Perron, and Schmidt–Phillips tests, while 

Kwiatkowski, Phillips, Schmidt and Shin test accept the null of stationarity. Whole, it appears 



that the volatility series can be reasonable be viewed as I(0) type process. Hence, a preliminary 

evidence supporting persistence in volatility is obtained. 

[Insert Table 5 about here] 

Since the Zivot and Andrews test rejects the null of a unit root process with drift, excluding 

exogenous structural change - possible in the favor of the alternative hypothesis of trend 

stationary process with a break in the intercept -, we check for the potential existence of 

several breaks. For this purpose, we perform a Bai and Perron test of multiple breakpoints 

(Bai, 1997; Bai and Perron, 1998; Bai and Perron, 2003). The test is implemented by Zeileis et 

al. (2015), following the ideas of Zeileis et al. (2003) and Zeileis et al. (2010).  

Fig. 4 reports on the selection of the optimal number of breaks, based on Bayesian Info 

Criterion (BIC) as well as on the residual sum of squares (RSS), for a segment starting at 

observation i and ending at j, by looking up the corresponding element in the triangular RSS 

matrix. 

[Insert Fig. 4. about here] 

Both criteria are significantly dropping with the shift from zero breaks to one break; and are 

reaching minimal levels for a number of breaks equal with four. These breaks are placed on 

the 28.05.2001, 16.12.2004, 18.12.2007 and, respectively, 02.08.2010. The 97.5% confidence 

intervals are relatively non-symmetric, equaling [22.05.2001, 13.06.2001], [08.11.2004, 

13.01.2005], [27.11.2007, 21.12.2007], and [30.07.2010, 10.08.2010]. This implies that the 

ends of a volatility regime can be easier predicted than the beginning of the subsequent 

regime. 

We further investigate the distribution of stochastic volatility series in greater details, by fitting 

on it an alpha-stable distribution. Thus, we involve two approaches, the former proposed by 

Koutrouvelis (1980), Koutrouvelis (1981), and the latter by McCulloch (1986), as are these 

implemented in MATLAB by Veillette (2012). Both approaches are providing a parameter 



providing the shape of the distribution 1  ,specific for a distribution which is heavily skewed 

to the right (‘extremal stable’- Zolotarev, 1986); for both approaches, the characteristic 

exponent 2  . Hence, extreme events in the volatility series are more probable than in the 

case of a Gaussian distribution (the tails are asymptotically equivalent to a Pareto law, i.e. they 

exhibit a power-law behaviour) (for more details, see Samoradnitsky and Taqqu, 1994; 

Barunik and Kristoufek, 2010). 

Moreover, we fit a Tweedie distributions model for the time-varying volatility. This is an 

exponential dispersion model (EDM) (a two-parameter family of distributions, consisting of a 

linear exponential family with an additional dispersion parameter) with power mean–variance 

relationships. More exactly, if  exp / 2th  follows an EDM distribution with mean µ and 

variance function V (), then       var exp / 2 , , 0ph V V p      (with   being the 

dispersion parameter) (see Dunn and Smyth, 2008; Kendal and Jørgensen, 2011). This class 

includes the normal (p = 0), Poisson (p = 1), gamma (p = 2) and the inverse Gaussian (p = 3) 

distributions. If p>3, there is a continuous with strictly positive support stable distribution. Fig. 

5 indicates that the last type of distribution fits  exp / 2th  (the estimation was done by using 

the ‘tweedie’ R package developed by Dunn, 2014). 

[Insert Fig. 5. about here] 

4.2. Hurst exponent analysis 

Based on the work of Hurst (1951) and Mandelbrot and Van Ness (1968), an extended 

literature deals with the Hurst (‘self-similarity’ parameter), inclusively in the context of 

financial markets (Di Matteo, 2007; Ellis, 2007; Alvarez-Ramirez et al., 2008; Grech and 

Pamuła, 2008; Matos et al. 2008; Barunik and Kristoufek, 2010; Rea et al., 2013). 

A Hurst exponent with a value equal to 0.5 indicates two possible generate processes: 1) an 

independent one (Beran, 1994) or, alternatively, 2) a short-range dependent one (Lillo and 

Farmer, 2004). If the Hurst exponent is higher than 0.5, this may reflect persistence in data. 



Correlatively, if Hurst exponent is less than 0.5, this may point towards an anti-persistent 

process. However, the sampling properties of the Hurst exponent estimates change with the fat 

tails effects in distribution (Barunik and Kristoufek, 2010). 

In order to estimate the presence of long-run persistence in volatility, Table 6 reports several 

estimators for the Hurst (‘self-similarity’) parameter (for detailed discussions on these methods 

see Taqqu et al., 1995; Montanari et al., 1999; Rea et al., 2013). The reason of not relying on a 

single estimation method is related to the presence of heavy tails at the level of volatility data. 

Such tails may affect the performance of individual estimates leading to wider confidence 

intervals (Barunik and Kristoufek, 2010). 

[Insert Table 6 about here] 

For the ‘aggregated variance method’, the original series is divided into blocks of size m and 

the sample variance is computed within each block. The slope 2 2H    from the least 

square fit of the logarithm of the sample variances versus the logarithm of the block sizes is 

providing an estimate of the Hurst exponent. However, Giraitis et al. (1999) show that this 

method is asymptotically biased by the order 1/ log N (with N being the number of 

observations). The ‘differenced aggregated variance method’ aims to distinguish jumps and 

slowly decaying trends from long-range dependence. It differences the sample variances of 

successive blocks and it uses the slope   from the least square fit of the logarithm of the 

differenced sample variances versus the logarithm of the block sizes, in order to provide an 

estimate for the Hurst exponent. The ‘aggregated absolute value/ moment method’ evaluates 

the Hurst exponent from the moments moment=M of absolute values of an aggregated FGN or 

FARIMA time series process. The ‘Higuchi (fractal dimension) method’ resembles the 

previous method, but, instead of blocks, a sliding window is used to compute the aggregated 

series (Higuchi, 1988; Bhattacharya et al., 1983) shows that the rescaled range statistic (the 

‘R/S method’) is not robust to the deviations from stationarity. Hence, for a short memory 



process with slowly decaying deterministic trend, this method will provide a Hurst estimate 

which will spuriously suggest the presence of long-memory. The ‘Whittle estimator’ is a semi-

parametric maximum likelihood estimator working with a part of spectrum near the origin 

(Beran, 1994; Robinson, 1995; Horvath and Shao, 1999; Kristoufek and Vosvrda, 2014). For 

this estimator, it is interesting to note that Rea et al. (2013) analyses the properties of twelve 

estimators for the Hurst exponent and the fractional differencing parameter (absolute value, 

aggregated variance, boxed periodogram, differenced variance, Higuchi or Peng periodogram, 

rescaled range, wavelet, Whittle, GPH  and Haslett-Raftery). Rea et al. (2013) concludes that 

only the Whittle (frequency domain) and Haslett-Raftery (time domain) estimators produce 

acceptable statistical properties, with sufficiently narrow confidence intervals, for time series 

with fewer than 4,000 observations. 

All these tests are implemented in the R package ‘fArma’ (Wuertz, 2013). In addition, we 

consider the so-called ‘Generalized Hurst Exponent’ (Di Matteo, 2007). This approach is 

based on scaling of q-th order moments of the increments of a time series X(t) (with 

,2 ,..., ,...,t k T   ) and it is based on the statistic: 
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(for q=2, this statistic is proportional to the autocorrelation function). Two cases can be 

identified: (1) the case in which H(q)=H is constant and independent of q (‘mono-fractal 

processes’, for which scaling behaviour is determined from a unique constant H coinciding 

with the Hurst coefficient) and, respectively, (2) a process with H(q) not constant (‘multi-

fractal processes’ different exponents characterize the scaling of different q-moments of the 

distribution). The estimations are done for q=1,2, 3 by using the MATLAB code provided by 



(Aste, 2011). One can note that a value of q equal with 1 is associated with the scaling 

behaviour of the absolute values of the increments, while a value of 2 is associated with the 

scaling of the autocorrelation function being related to the power spectrum (Di Matteo, 2007). 

The values of the tests point towards the presence of long-memory persistence in volatility. 

The lowest estimated values correspond to the Generalized Hurst method, while the highest 

are provided by the Higuchi method. Nevertheless, all estimates are greater than 0.7 and, so, 

they are consistent with a significant persistence in volatility. 

 

4.3. Multi-Fractal De-trended Fluctuation analysis 

Supplementary, we run a Multi-Fractal De-trended Fluctuation Analysis (MFDA) for the 

stochastic volatility. Proposed by Kantelhardt et al. (2002) this method can be used in order to 

estimate the multi-fractal spectrum of power law exponents. It proceeds by dividing the time 

series into sub-periods. The profile of each period is described similar to the rescaled range 

analysis (R/S). The polynomial fit of order l, is estimated for each sub-period. Since we set 

l=1, we involve a linear de-trending. The de-trended signal  , iY t  which is constructed for 

sub-period i = 1, …, N is then used to define, for each sub-period of length υ,  the fluctuation 
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  . Furthermore, this is averaged over N sub-periods of length 

υ, for different values of q, giving     
1

2

, ,1
1/ ,

q

DFA q DFi A qN iF F


 


  .  ,DFA qF  scales as 

   
,DFA

H

q

q
F c  (with c being a constant,which is independent of υ and H(q) is the 

generalized Hurst exponent) (see for a more detailed presentation, Kantelhardt et al., 2002; 

Barunik and Kristoufek, 2010; Ihlen, 2012). The results are displayed in Fig. 6 based on the 

MATLAB implementation by Ihlen (2012). 

[Insert Fig. 6. about here] 



Typical for a multi-fractal time series, the slopes  H q  are q-dependent. Furthermore, as 

commonly seen in the literature,  H q  is converted to the q-order mass exponent, which 

thereafter is converted to the q-order singularity exponent   h q  and to q-order singularity 

dimension   D q . The plot of  h q versus  D q  reflects the multi-fractal spectrum. As in 

the case for stochastic volatility, a multi-fractal time series has a mass exponent with a curved 

q-dependency and, consequently, a decreasing singularity exponent. The corresponding multi-

fractal spectrum is characterised by the difference between maximum and minimum levels of 

 h q (the multi-fractal spectrum width). Since the multi-fractal spectrum displays a left 

truncation, it can be presumed that the volatility has a multi-fractal structure, which is 

insensitive to the local fluctuations with large magnitude (Ihlen, 2012).  

We also use a version of this implementation, where the multi-fractal spectrum is directly 

estimated from local fluctuation. As Ihlen (2012) notes: “the width and shape of the 

multifractal spectrum reflect the temporal variation of the local Hurst exponent or, in other 

words, the temporal variation in the local scale invariant structure of the time series”. The 

temporal variations of local Hurst exponent are synthetized by a histogram representing the 

probability distribution, while the multi-fractal spectrum is defined as the log-transformation 

of the normalized probability distribution. 

The local Hurst exponent is able to discriminate between periods with small and, respectively, 

large fluctuations. The relatively large width of probability distribution and multi-fractal 

spectrum are specific to multi-fractal series. 

[Insert Fig. 7. about here] 

 

4.4. The fractional (“memory”) parameter 

To complete the preliminary analysis, we account for the fact that the autoregressive 



fractionally integrated moving average process, ARFIMA (p, d, q), has widely been used in 

order to represent a time series with long memory properties (Beran, 1994). One of the key 

issues in the estimation of such model is represented by the estimation of the fractional 

parameter d. More exactly, a simple ARFIMA (p, d, q) takes the following form: 

      1 8
d

tB B B      

Here t is a white noise process and B is the back-shift operator. The polynomials 

   1 1... , 1 ...1 p s

p sB B B BB B          have orders p and, respectively, s with 

all their roots outside the unit circle (Reisen et al., 2001). 

The fractional (“memory”) parameter d was estimated by using the R package ‘fracdiff’ 

(Frailey et al., 2012). The estimates are based on Geweke and Porter- Hudak (1983): estimator 

and, respectively, on Reisen estimator (Reisen, 1994; Reisen et al., 2001; Reisen et al., 2001). 

The results are reported in Table 7. 

[Insert Table 7 about here] 

These estimators are providing large (and in almost all cases statistical significant) values for 

the fractional parameters. The Reisen method for estimating d is more accurate than the 

Geweke and Porter- Hudak estimator,but both methods are indicating the presence of long-

memory in stochastic volatility. 

 

4.5. Mutual information analysis 

4.5.1. Shannon’s index of diversity (Chao and Shen estimator) 

As a preliminary stage in the mutual information analysis, we consider the dynamic of 

volatility entropy over overlapping windows (with a pre-determined length of 50 days -

approximately a two trading month span). With this purpose, we take into account the 

estimator proposed by Chao and Shen (2003), as implemented in R language by Hausser and 

Strimmer (2014). This is based on unequal probability sampling and account for the non-



uniform distribution of data. The estimations are displayed by Fig. 8. 

[Insert Fig. 8. about here] 

As these estimations suggest, the volatility is characterized by shifts from low-entropy regimes 

to high-entropy regimes (with significant peaks in the last months of 2003 and, respectively, 

2004 as well as in the first quarter of 2011). Also, the wavelet power spectrum (rectified 

according to Liu et al. (2007) and implemented in the MATLAB codes provided by Ng and 

Chan (2012) and Grinsted et al. (2004) shows that the Chao and Shen estimator for volatility is 

high and statistically significant especially for frequencies up to 32 days. Hence, there is room 

for a more detailed analysis of such flows, which can be based on mutual information between 

current and lagged values of volatility. We further focus on the estimation of the mutual 

information index. 

 

4.5.2. Average mutual information index 

The estimates of this index up to a lag equal with 250 days are reported in Fig. 9. The 

estimations are performed by using the R package ‘tseriesChaos’ (di Narzo, 2013). 

[Insert Fig. 9. about here] 

For comparison purposes, we show, in the left panel, the average mutual information for a 

fractional Gaussian noise (fGn) process with the same number of observations (4352) and an 

Hurst exponent equal to the average estimates (0.883) as for the time-varying volatility series. 

For such process, the mutual information decline fast and stays around zero for different lags. 

Still, as this figure suggests, the mutual information index for stochastic volatility declines 

relatively fast up, till a lag equal with 50 days (approximately two trading months). However, 

it does not converge to zero beyond this lag and it even starts to slowly increase for lags 

greater than 162 (approximately two trading quarters). The global maximum is reached in 

mutual information for the first lag, while other local maxima are placed around lags equal 



with 25, 125 and, respectively, 200 days. 

In order to investigate this, in greater details, we apply a Monte Carlo simulation based on 

10000 draws from a fGn process with the same characteristics as volatility. These draws are 

generated accordingly to the procedure described in (Beran, 1994). For each draw, we estimate 

the mutual information up to a lag equal with 250 observations. 

Fig. 10 displays the average squared deviations of volatility specific mutual information from 

the fGn processes mutual information at the same lag: 

   
210000

1
/10000, 1,...,250fgn

i
MI MI  


     (where  fgnMI  is the mutual information 

of the fGn processes up to a lag equal with ).  It appears that such difference is fast declining 

for small lags in order to increase again for lags around 125 days and, respectively, for lags 

greater than 200 days (Fig. 10).    

[Insert Fig. 10. about here] 

Overall, the mutual information analysis reveals the existence of both medium and long-run 

memory in the specific BET market volatility generative processes. This outcome is robust to 

various choices for the number of considered bins (not reported here). 

Possible explanations for such findings may be related to: the low market capitalization of 

$33.5 billion as of January 2015 (even if, between January 2012 and January 2015, the 

domestic market capitalization increased approximately by 70% mainly due to the listing of 

new companies on the regulated market); the small set of traded financial instruments 

(including only shares, bonds, fund units and certificates); the limited number of listed 

companies (83 in January 2015); the frequency of thin trade cases on different market 

components; and the fact that (with the exception of a small segment including only 20 

securities) short trades are not allowed.  

There are fewer arbitrage opportunities on the market and the investors seldom involve in high 

frequencies trades. Thus, the investors feel constrained to adopt more ‘passive’ trading 



strategies, with larger horizons for portfolios holding. ’Buy and hold’ monthly or even 

quarterly trading strategies are easier to be applied in comparison with intra-day scalping 

strategies. Alternatively, these results can reflect lower information efficiency: due to both 

information asymmetry and moral hazard phenomena, the new information shocks are slowly 

absorbed by the market, being translated over several trading periods.   

In order to provide more insights, we ‘zoom-in’ by splitting the stochastic volatility series in 

overlapping windows with a pre-determined length of 500 days (two trading years) and we 

compute the mutual information inside each individual window for lags up till 50 days. Fig.10 

displays the minimal values of these estimates. If such values are significantly different from 

zero, then it can be argued that mutual information is capturing persistence at the level of the 

stochastic volatility series. 

It is interesting to note that the results resemble the estimates of local Hurst exponent, with 

larger deviations of minimal local mutual information from zero appearing almost in the same 

data positions as the large Hurst exponent values (during 2004-2005 as well as for the time 

span of 2008-2010). After the peak of the instability period, local mutual information starts 

slowly to decline, but without fully converging to zero. It is likewise interesting to note that 

the breaks identified by Bai and Perron tests are associated as well with noticeable values of 

mutual information (Fig. 11). 

[Insert Fig. 11. about here] 

Overall, the mutual information approach shows that volatility becomes more persistent during 

functional instability periods for the market, while in normal conditions it declines without 

completely vanishing. Such outcome is consistent with the results of the other involved 

methods.  

 

 



5. Conclusions and discussions 

This paper deals with persistence in financial markets returns’ volatility. We argue that such 

persistence might arise as a consequence of the imperfect nature of the information available 

on the markets as well as of market agents’ imperfect tools of gathering and processing such 

information.  

We extract the time-varying volatility from returns, based on a stochastic model as an 

alternative to ARCH-GARCH approach. We further apply several methods in order to check 

for persistence (the Hurst exponent analysis, the Multi-Fractal De-trended Fluctuation 

analysis, and the fractional (“memory”) parameter). We also suggest that the mutual 

information might be a valid alternative method for persistence checking: significant 

deviations of mutual information from zero (alternatively, from the levels of mutual 

information specific to a fractional Gaussian noise with the same Hurst exponent as the 

empirical series) at higher order lags can be interpreted as an evidence of long-memory. A 

rolling estimation of mutual information can provide more insights (with the length of the 

rolling window acting as a ‘zoom-in’ parameter). We argue that one major advantage of 

applying the mutual information consists in that it is a ‘model-free’ procedure: no special 

requirements about the underlying mechanisms of returns and their volatilities are needed on 

an ex-ante basis. The results from the mutual information approach are consistent with those 

derived from other methods. Moreover, mutual information appears able to identify the 

regime-shift areas.  

As the case of Bucharest Stock Exchange BET index illustrates, markets can displays 

persistence in returns’ volatility. Such finding is in the line with the other findings in the 

literature. Such empirical findings seriously challenge the Efficient Market Hypothesis 

(EMH).  For instance, the persistence in volatility can lead to the existence of some arbitrage 

opportunities. The existence of such opportunities contradicts a strong requirement of EMH, 



according to which discrete time markets are efficient, if and only if, there are no arbitrage 

opportunities (Jarrow and Larsson, 2012). Comprehensively, the assumption of ‘weak-form’ 

market (in) efficiency is directly tied to the martingale property of security price processes. 

Kristoufek and Vosvrda (2013) argues that this feature is primarily related to uncorrelated 

price time series. Hence, the existence of such long-memory can contradict the core 

assumptions of EMH. Thus, a more realistic framework able to accommodate the empirical 

evidences against EMH should be developed. Such framework should not necessarily be build-

up on the assumption that EMH if fully invalid. Rather, it may argue that EMH is valid but 

only as a local property of the market: the market paths might include both areas of high 

efficiency (in which EMH holds) and areas with low efficiency in which EMH is no longer 

valid. 
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Tables and figures 

 

Table 1  

Market capitalization of listed companies for some Central and Easter European countries (% 

of GDP; averages 1997-2010). 

Bulgaria 13.433 

Czech Republic 22.030 

Hungary 24.460 

Poland 25.076 

Romania 12.017 

Slovak Republic 5.594 

Slovenia 21.072 

Source of data: Word Bank (2015) 

 

Table 2  

Main statistics for BET index 

 Level Log-returns 

Mean 4038.996 0.021 

Median 4562.320 0.021 

Maximum 10813.590 4.588 

Minimum 281.090 -5.697 

Std. Dev. 2762.631 0.744 

Skewness 0.151 -0.336 

Kurtosis 1.886 10.123 

Jarque-Bera 241.507 9283.154 

Probability 0.000 0.000 

Zivot-Andrews Unit Root Test 

(Null Hypothesis: BET index has a unit root with a 

structural break in both the intercept and trend)  

-4.366 

(p=0.000) 

 

-49.307 

(p=0.001) 

Tests of normal distributions   

Lilliefors (D) 0.126 

(p=0.000) 

0.089 

(p=0.000) 

Cramer-von Mises (W2) 15.797 

(p=0.000) 

14.335 

(p=0.000) 

Watson (U2) 15.764 

(p=0.000) 

14.307 

(p=0.000) 

Anderson-Darling (A2) 105.728 

(p=0.000) 

82.217 

(p=0.000) 

Note: the probabilities for the Zivot-Andrews test are calculated from a standard t-distribution and do not take 

into account the breakpoint selection process.   

 

Table 3  

Posterior means, standard deviations and quantiles of model parameters 

Parameter Posterior mean Posterior standard 

deviation 

5% quantile 95% quantile 

   0.030 0.008 0.017 0.042 

h   -1.345 0.126 -1.553 -1.139 



h   0.962 0.007 0.949 0.974 

2

h   0.087 0.016 0.061 0.115 

   0.133 0.016 0.108 0.159 

   27.271 10.665 13.040 46.598 

 

Table 4 

Main statistics for time-varying standard deviation  exp / 2th   

 Level First order differences 

Mean 0.591 0.000 

Median 0.516 0.000 

Maximum 2.593 0.194 

Minimum 0.161 -0.227 

Std. Dev. 0.317 0.031 

Skewness 1.742 0.359 

Kurtosis 7.421 9.710 

Jarque-Bera 5745.347 8256.870 

Probability 0.000 0.000 

Zivot-Andrews Unit Root Test  

(Null Hypothesis: Volatility has a unit root with a structural 

break in both the intercept and trend)   

-9.198 

(p=0.000) 

 

-24.916 

(p=0.026) 

Tests of normal distributions   

Lilliefors (D) 0.118 

(p=0.000) 

0.099 

(p=0.000) 

Cramer-von Mises (W2) 23.880 

(p=0.000) 

16.882 

(p=0.000) 

Watson (U2) 18.475 

(p=0.000) 

16.768 

(p=0.000) 

Anderson-Darling (A2) 142.357 

(p=0.000) 

94.345 

(p=0.000) 

Parameters of an alfa-stable distribution:   

Koutrouvelis (1980,1981):   

α 

 1.586  

β 

 1  

γ 

 0.155  

δ 0.665  

McCulloch (1986):   

α 

 1.622  

β 

 1  

γ 

 0.167  

δ 0.591  

Note: The probabilities for the Zivot-Andrews test are calculated from a standard t-distribution and do not take 

into account the breakpoint selection process.  



Table 5  

Various unit root tests for S&P 500 series (levels of returns) 

Test Value Conclusion 

Augmented Dickey–Fuller -9.959 Reject the unit root null 

Elliott–Rothenberg–Stock (DF-GLS) -6.785 Reject the unit root null 

Elliott–Rothenberg–Stock (feasible 

point optimal test) 

0.226 Reject the unit root null 

KPSS (mu-test) 1.362 Accept the stationarity null 

KPSS (tau-test) 0.680 Accept the stationarity null 

Phillips–Perron (Z-alpha) -78.340 Reject the unit root null 

Phillips–Perron (Z-tau) -6.260 Reject the unit root null 

Schmidt–Phillips (tau-test) -11.957 Reject the unit root null 

Schmidt–Phillips (rho-test) -285.405 Reject the unit root null 

 

Table 6 

Hurst parameter estimates for time-varying standard deviation  exp / 2th   

Aggregated Variance Method 0.863 

Differenced Aggregated Variance Method 0.859 

Aggregated Absolute Value/Moment Method 0.916 

Higuchi or Fractal Dimension Method 0.986 

The R/S Method 0.944 

Hurst parameter based on Whittle Estimator for Fractional Gaussian Noise / 

Fractional ARIMA 

0.990 

Generalized Hurst Exponent (DiMatteo, 2007)(q=1) 

Generalized Hurst Exponent (DiMatteo, 2007)(q=2) 

Generalized Hurst Exponent (DiMatteo, 2007)(q=3) 

0.803 

0.792 

0.775 

 

Table 7  
The fractional (“memory”) parameter d in an ARFIMA(p,d,q) model for time-varying standard 

deviation  exp / 2th   

 The bandwidth used in the regression equation 

 0.30 0.40 0.50 0.60 

Geweke and Porter-

Hudak (1983) estimator 

0.633 

(0.256) 

0.476 

(0.146) 

0.399 

(0.089) 

0.568 

(0.055) 

Reisen (1994); Reisen 

et al. (2001) estimator 

0.665 

(0.096) 

0.425 

(0.055) 

0.408 

(0.033) 

0.591 

(0.021) 

Notes: Asymptotic standard deviation in (). For Reisen estimator, the parameter   (the exponent of the 

bandwidth used in the lag Parzen window) is set equal with 0.90. 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 1. Log-returns of BET index. 

 

 

Fig. 2. Estimates of  p y│  (left panel) and  p y│  (right panel) 
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Fig. 3. Posterior means (solid line) and 90% credible intervals (dash lines) of the time-varying 

standard deviation  exp / 2th  

 

Fig. 4. The Bai and Perron test for the optimal number of structural breaks in volatility 

 

Note: The minimal segment size in which the regression coefficients are constant: 653 observations (15% of the 

data). 
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Fig.5. Tweedie distribution of the time-varying standard deviation  exp / 2th  

 

 

Fig. 6. Multifractal Detrended Fluctuation Analysis of the time-varying standard deviation 

 exp / 2th  - q-order  Hurst exponent 
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Fig. 7. Multifractal Detrended Fluctuation Analysis of the time-varying standard deviation 

 exp / 2th  - local Hurst exponent 

 

 

Fig.8. Nonparametric estimation of Shannon’s index of diversity by Chao and Shen method 

for the time-varying standard deviation  exp / 2th  

(a) Estimator       

 

(b) Rectified wavelet power spectrum of estimator 
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Notes: Power spectrum rectified according to Liu et al. [51] – The thick black contour designates the 5% 

significance level against red noise which is estimated from Monte Carlo simulations using phase-randomized 

surrogate series. The cone of influence, which indicates the region affected by edge effects, is also shown with a 

light black line.  

 

Fig. 9. The average mutual information index (AMI) for time-varying standard deviation 

 exp / 2th
 

 

Note: Number of bins is equal with 2. 
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Fig. 10. Average squared differences from 10000 fGn simulations of mutual information 

 
 

Fig. 11. The minimal mutual information on overlapping windows 
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