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Abstract

We introduce evolutionary competition between adjustment processes in the Cournot

oligopoly model. Our main focus is on rational play versus a general short-memory

adaptive adjustment process. We �nd that, although rational play has a stabilizing

in�uence, a su¢ cient increase in the number of �rms in the market tends to make

the Cournot-Nash equilibrium unstable. Moreover, the interaction between adjustment

processes naturally leads to the emergence of complicated endogenous �uctuations as

the number of �rms increases, even when demand and costs are linear.
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1 Introduction

Since its original inception in the nineteenth century the Cournot model has become one of the

standard and most widely used models of imperfect competition. Although the Cournot-Nash

equilibrium is typically used as a description of �rm behavior in that model, the question if

and how �rms will coordinate on that equilibrium has still not been unambiguously resolved.

Classic short-memory adaptive adjustment processes such as best-reply dynamics (see e.g.

Theocharis (1960)) and gradient learning (see e.g. Arrow and Hurwicz (1960)) may converge

to the Cournot-Nash equilibrium, but instability typically sets in when the number of �rms

in the market increases (see e.g. Palander (1939) and Theocharis (1960) who show that,

with linear demand and constant marginal costs, the Cournot-Nash equilibrium is unstable

under best-reply dynamics for more than three �rms1). An alternative to these intuitive, but

not very sophisticated, adaptive processes are models based on introspection, where �rms are

rational and have full knowledge of the demand function and of their own and their opponents�

cost functions. Common knowledge of rationality then allows �rms to derive and coordinate

on the Cournot-Nash equilibrium through deductive reasoning.2,3

Apart from the di¤erence in dynamic behavior induced by these di¤erent types of adjust-

ment processes, these processes have other drawbacks as a description of market behavior.

1Although this �nding is typically credited to Theocharis (1960), the argument was already made, in
Swedish and some 20 years earlier, in Palander (1939). See Puu (2008) for a discussion. Later contributions
to the literature on the stability of best-reply dynamics in the Cournot model are Fisher (1961) and McManus
(1964), who consider an adaptive response in the direction of the best-reply and/or increasing marginal costs
and Hahn (1962) who considers the continuous adjustment process towards the best-reply. For related models,
see e.g. Okuguchi (1970) and Szidarovszky, Rassenti, and Yen (1994).

2However, coordination problems may emerge when the Cournot-Nash equilibrium is not unique.
3The Cournot-Nash equilibrium is also supported by relatively sophisticated long-memory adjustment

processes. For example, �ctitious play (see Brown (1951)), which asserts that each player best-replies to the
empirical distribution of the opponents�past record of play, converges to the Cournot-Nash equilibrium for a
large set of demand-cost structures (see e.g. Deschamp (1975) and Thorlund-Petersen (1990)).
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On the one hand, the assumption underlying conventional processes, such as best-reply dy-

namics and gradient learning, that rivals will not revise their output from the last period, is

continuously invalidated outside equilibrium (see e.g. Seade (1980), Al-Nowaihi and Levine

(1985)). On the other hand, more sophisticated processes, such as rational play, put very

high demands on the cognitive capacities of the players. It seems reasonable that in a market

where all �rms use the same adjustment process a tendency exists for some �rms to change

to another type of behavior �either to avoid structural decision-making errors in an unstable

environment, or to save on cognitive e¤orts in a stable environment. In this paper we therefore

introduce a model that presents a middle ground between adaptation and introspection by

allowing �rms to use di¤erent adjustment processes and switch between those on the basis of

past performance, as in e.g. Brock and Hommes (1997) and Droste, Hommes, and Tuinstra

(2002).

To some extent our approach is supported by �ndings from laboratory experiments with

human subjects. In particular, the predictions of the rational model as well as those of less

sophisticated short-memory adjustment processes fail to describe data from these experiments

convincingly. Rassenti, Reynolds, Smith, and Szidarovszky (2000), for example, present an

experiment on a Cournot oligopoly with linear demand, constant (but asymmetric) marginal

costs and �ve �rms, implying that the Cournot-Nash equilibrium is unstable under best-

reply dynamics. Indeed, they �nd that aggregate output persistently oscillates around the

equilibrium and does not converge. Individual behavior, however, is not explained very well by

best-reply dynamics. Huck, Normann, and Oechssler (2002) discuss a linear (and symmetric)

Cournot oligopoly experiment with four �rms. Instead of diverging quantities, as predicted by

best-reply dynamics, they �nd that the time average of quantities converges to the Cournot-

Nash equilibrium quantity, although there is substantial volatility around this equilibrium

throughout the experiment. Interestingly, Huck, Normann, and Oechssler (2002) �nd that

a process where participants mix between best-replying and imitating the previous period�s

average quantity describes participants�behavior best.
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In this paper we focus in particular on the interaction between a single short-memory

adjustment process and rational play. We �nd that the presence of rational �rms increases

the threshold number of players that triggers instability, although the dynamics may still

be unstable if the number of �rms is su¢ ciently large. Moreover, evolutionary competition

between adjustment processes may lead to complicated dynamics, characterized by perpetual,

but bounded, �uctuations in production levels. As in the experiments discussed above, these

�uctuations have a smaller amplitude than the �uctuations that would emerge when all �rms

use the short-memory adjustment process, but they are more erratic and less predictable.

These complicated dynamics arise naturally from the interaction of two opposing forces.

If the fraction of rational �rms is su¢ ciently high the Cournot-Nash equilibrium will be

stable. This induces �rms to switch to a short-memory adjustment process that gives similar

market pro�ts, but does not require as much cognitive e¤ort. As a large enough fraction of the

population of �rms uses this short-memory adjustment process the Cournot-Nash equilibrium

becomes unstable and quantities start �uctuating. When these �uctuations are su¢ ciently

large, �rms are attracted to rational play, which stabilizes the dynamics again, and so on.

Our paper contributes to the literature on complicated dynamics and endogenous �uctu-

ations in Cournot oligopoly. This literature typically considers Cournot duopolies with non-

monotonic reaction curves that are postulated ad hoc (Rand (1978)), derived from iso-elastic

demand functions together with substantial asymmetries in marginal costs (Puu (1991)) or

derived from cost externalities (Kopel (1996)), and shows that best-reply dynamics might

result in periodic cycles and chaotic behavior. For these models with non-monotonic reaction

curves complicated behavior might also arise for other adjustment processes (see e.g. Agiza,

Bischi, and Kopel (1999), Bischi, Naimzada, and Sbragia (2007)). Although non-monotonic

reaction curves cannot be excluded on economic grounds4 complicated behavior in our model

4Corchon and Mas-Colell (1996) show that any type of behavior can emerge for continuous time gradient (or
best-reply) dynamics in heterogeneous oligopoly, although Furth (2009) argues that for homogeneous Cournot
oligopoly there are certain restrictions as to what behavior can arise. Relatedly, Dana and Montrucchio (1986)
show that in a duopoly model where �rms maximize their discounted stream of future pro�ts and play Markov
perfect equilibria �and therefore are rational �any behavior is possible for small discount factors.
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emerges in a much more natural fashion and perpetual but bounded �uctuations occur even

for linear demand and cost curves. Finally, our work is closely related to Droste, Hommes,

and Tuinstra (2002) who investigate evolutionary competition �modelled by the replicator

dynamics �between best-reply dynamics and rational play in a Cournot duopoly with linear

demand and quadratic costs.5 They �nd that complicated dynamics may be possible when

evolutionary pressure is high and marginal costs are decreasing su¢ ciently fast. The latter

implies the existence of multiple Cournot-Nash equilibria (a symmetric interior equilibrium

and two asymmetric boundary equilibria where one of the �rms produces nothing) as well

as a perverse comparative static e¤ect: an exogenous increase in demand reduces the sym-

metric Cournot-Nash equilibrium price. In the present paper, which features a model with

a unique Cournot-Nash equilibrium and intuitive comparative statics e¤ects, instability and

complicated dynamics emerge more naturally as the market size increases.

The rest of the paper is organized as follows. Section 2 brie�y reviews short-memory

adjustment processes in the general symmetric n-player Cournot model. Section 3 introduces

a Cournot population game where �rms can choose between rational play and a general short-

memory adjustment process and Section 4 illustrates the global dynamics of this model for

the Cournot oligopoly game with rational play versus best-reply dynamics for linear demand

and constant marginal costs. Section 5 provides a short discussion.

2 Short-memory adjustment processes in Cournot oli-

gopoly

Consider a Cournot oligopoly with n �rms supplying a homogeneous commodity.6 The inverse

demand function P (Q) is non-negative, nonincreasing and, whenever it is strictly positive,

twice continuously di¤erentiable. Here Q =
Pn

i=1 qi is aggregate output, with qi production

5See Ochea (2010) for an analysis of this model with a larger selection of adjustment processes.
6For a thorough treatment of the Cournot oligopoly game under general demand and cost structures we

refer the reader to Bischi, Chiarella, Kopel, and Szidarovszky (2010).
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of �rm i. The cost function C (qi) is twice continuously di¤erentiable and the same for every

�rm. Moreover, C (qi) � 0 and C 0 (qi) � 0 for every qi.

Each �rm wants to maximize instantaneous pro�ts P (Q�i + qi) qi � C (qi), where Q�i =P
j 6=i qj = Q� qi. This gives the following �rst order condition for an interior solution

P (Q�i + qi) + qiP
0 (Q�i + qi)� C 0 (qi) = 0; (1)

with second order condition for a local maximum given by 2P 0 (Q�i + qi) + qiP 00 (Q�i + qi)�

C 00 (qi) � 0.

The �rst order condition (1) implicitly de�nes the best-reply correspondence or reaction

curve:

qi = R(Q�i): (2)

We assume that a symmetric Cournot-Nash equilibrium q�, that is, the solution to q� =

R ((n� 1) q�), exists and is strictly positive and unique.7 Aggregate equilibrium production

is then given by Q� = nq�.

The key question is: how do �rms learn to play q�? One approach is to assume com-

plete information, rational �rms, and common knowledge of rationality. Then �rms derive

the Cournot-Nash equilibrium by introspection and coordinate on that equilibrium. Note,

however, that rational players may deviate from the Cournot-Nash equilibrium if not all �rms

are rational (see the discussion of rational play in a heterogeneous environment in Section 3).

As an alternative to rational play we consider short-memory adaptive adjustment processes

with the following general structure

qi;t = F (qi;t�1; Q�i;t�1) : (3)

7Su¢ cient conditions for the existence and uniqueness of the Cournot-Nash equilibrium are that P (�) is
twice continuously di¤erentiable, nonincreasing and concave on the interval where it is positive, and that C (�)
is twice continuously di¤erentiable, nondecreasing and convex, see Szidarovszky and Yakowitz (1977). For
more general conditions on existence and uniqueness, see e.g. Novshek (1985) and Kolstad and Mathiesen
(1987), respectively.
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That is, the �rm�s current production decision depends upon its own choice and the aggregate

choices of the other �rms from the previous period. We make the following assumption on the

adjustment process (3), where F �q =
@F (q;Q�i)

@q

���
(q�;(n�1)q�)

and F �Q =
@F (q;Q�i)
@Q�i

���
(q�;(n�1)q�)

denote

the partial derivatives of F , evaluated at the Cournot-Nash equilibrium.

Assumption A The adjustment process (3) satis�es (i) F (q�; (n� 1) q�) = q�, (ii)
��F �q �� < 1,

F �Q 2 (�1;��), where � > 0 is a strictly positive constant, and F �q � F �Q < 1.

Part (i) of Assumption A ensures that the Cournot-Nash equilibrium quantity corresponds

to a steady state of the adjustment process. Part (ii) puts some natural restrictions on the

partial derivatives of F which facilitate stability of adjustment process (3). In particular, note

that either
��F �q �� > 1 or F �Q < �1 would make the adjustment process inherently unstable: a

small change in q or Q�i in the previous time period, respectively, would then bring about

a larger change in q in the current period. Similarly, F �q � F �Q > 1 would imply that a

redistribution of production from Q�i to q in the current period additionally increases next

period�s output q by more than that redistribution. The assumption that F �Q is negative and

bounded away from zero makes sense because quantities are strategic substitutes.

A number of well-known adjustment processes can be represented by (3).8 Probably best-

known is the best-reply dynamics (see e.g. Theocharis (1960)) which assumes that �rms

best-reply to the aggregate quantity of the other �rms from the previous period, that is

F (q;Q�i) = R (Q�i) :

Note that we have F �q = 0 and F �Q = R0
�
Q��i

�
, which is indeed typically negative.9 The

closely related adaptive best-reply dynamics (see e.g. Fisher (1961)), where �rms move in

8Bischi, Chiarella, Kopel, and Szidarovszky (2010) provide a systematic analysis of a variety of adjustment
processes in Cournot oligopoly games.

9From the �rst order condition (1) we �nd that

dqi
dQ�i

= R0 (Q�i) = �
P 0 (Q) + qiP

00 (Q)

2P 0 (Q) + qiP 00 (Q)� C 00 (qi)
: (4)
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the direction of their best reply, can be written as F (q;Q�i) = �R (Q�i) + (1� �) qi, with

� 2 (0; 1] and where F �q = 1 � � and F �Q = �R0
�
Q��i

�
. Another variation is suggested in

Huck, Normann, and Oechssler (2002), where it is found that participants to a laboratory

experiment use a weighted average of best-reply and imitation.

Another famous adjustment process is gradient learning (see e.g. Arrow and Hurwicz

(1960) and Bischi, Chiarella, Kopel, and Szidarovszky (2010)) where �rms adapt their decision

in the direction of increasing pro�ts, that is

F (qi; Q�i) = qi + �
@� (qi; Q�i)

@qi
;

with � > 0 the speed of adjustment parameter. Here F �Q = � [P 0 (Q�) + q�P 00 (Q�)] and

F �q = 1 + � [2P (Q�) + q�P 00 (Q�)� C 00 (q�)], where F �q < 1 follows from the second order

condition for a local maximum and F �Q < 0 holds under the familiar condition that the

inverse demand function is �not too convex�(see footnote 9).

Besides these benchmark adjustment processes many other processes obey the general

form (3), such as local monopolistic approximation10 or imitating the average (although the

latter does not satisfy part (i) of Assumption A). Some other adjustment processes, such as

�ctitious play and least squares learning (see e.g. Anufriev, Kopányi, and Tuinstra (2013)),

cannot be represented by (3).

The next proposition characterizes when the Cournot-Nash equilibrium is stable, given

Note that the second order condition for a local maximum implies that the denominator, evaluated at the
Cournot-Nash equilibrium, is negative. Typically the numerator is also negative (although this is not ne-
cessarily the case if the inverse demand function is su¢ ciently convex), and therefore we generally have
R0
�
Q��i

�
< 0.

10The idea behind local monopolistic approximation is that every �rm estimates a linear demand curve on
the basis of his last observed price-quantity combination and the slope of the inverse demand function at that
quantity in the last period. It then uses this estimated demand function to determine its perceived pro�t
maximizing quantity. For constant marginal costs c this gives rise to adjustment process

F (q;Q�i) =
1

2
q � 1

2

P (q +Q�i)� c
P 0 (q +Q�i)

:

For details, see Tuinstra (2004) and Bischi, Naimzada, and Sbragia (2007).
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that all �rms use the same adjustment process (3).11

Proposition 1 Let all �rms use adjustment process (3). The symmetric Cournot-Nash equi-

librium (q�; : : : ; q�) is locally stable if

��F �q + (n� 1)F �Q�� < 1: (5)

For n large enough the Cournot-Nash equilibrium is unstable.

Proof. The dynamics of quantities is governed by a system of n �rst order di¤erence

equations, given by (3) for i = 1; : : : ; n. All of the diagonal elements of the corresponding

n�n Jacobian matrix J�, evaluated at the Cournot�Nash equilibrium, are equal to F �q and all

of its o¤-diagonal elements are equal to F �Q. It follows that J
� has eigenvalues �1 = F �q � F �Q,

with multiplicity n � 1, and �2 = F �q + (n� 1)F �Q. Because the Cournot-Nash equilibrium

is locally stable if all eigenvalues of J� lie within the unit circle, and since by Assumption

A we have j�1j < 1, a su¢ cient condition for local stability is j�2j =
��F �q + (n� 1)F �Q�� < 1.

Because F �Q � �� < 0 and F �q 2 (�1; 1), condition (5) will not be satis�ed for n su¢ ciently

large.

Proposition 1 shows that the Cournot-Nash equilibrium becomes unstable, under adjust-

ment process (3), if the number of �rms increases su¢ ciently. In particular, condition (5)

gives the following instability threshold

n > 1�
1 + F �q
F �Q

: (6)

11Recall that the local stability properties of the �xed point of a nonlinear dynamical system are qualitatively
the same as those of the linearized system, provided that the �xed point is hyperbolic (that is, the Jacobian
matrix has no eigenvalues on the unit circle), see e.g. Kuznetsov (1995). Such a �xed point is locally stable
(a sink) if all eigenvalues of the Jacobian matrix (evaluated at that �xed point) lie within the unit circle, and
the �xed point is unstable either when all eigenvalues lie outside the unit circle (the �xed point is then called
a source) or when at least one eigenvalue lies outside the unit circle, and at least one eigenvalue lies inside
the unit circle (the �xed point is then called a saddle).
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The intuition is that individual �rms, who choose their production level partly on the basis of

last period�s aggregate production of the other �rms, do not take into account that those other

�rms also adjust their production level. Obviously, disregarding other �rms�adjustments will

have a larger e¤ect when there are more �rms in the market (or when
��F �Q�� is higher) and

eventually destabilizes the Cournot-Nash equilibrium. For example, with linear demand and

costs, the slope of the resulting linear reaction curve equals �1
2
. This means that if one �rm

deviates from the equilibrium by producing one additional unit, under best-reply dynamics

every other �rm responds by decreasing its own production by half a unit. Consequently, for

n > 3 the aggregate reduction in production is larger than the earlier increase in production,

which renders the dynamics unstable. Similarly, for gradient learning with a speed of adjust-

ment � low enough to induce convergence to the Cournot-Nash equilibrium when the number

of �rms is small, a su¢ cient increase in the number of �rms will destabilize the dynamics.

Since F �Q typically depends upon n through q
�, in principle a market structure could exist

with the property that F �Q decreases in n faster than
1
n
, meaning that (3) may converge to the

Cournot-Nash equilibrium for any number of �rms. However, such a market structure seems

unlikely and, to the best of our knowledge, has not been considered in the literature.12 The

assumption that F �Q is bounded away from zero therefore seems innocuous.

12For the speci�cation of Theocharis (1960), with linear inverse demand function and constant marginal
costs the reaction curve is linear with a constant slope that is independent of n. For an iso-elastic inverse
demand function and constant marginal costs the slope of the reaction curve, evaluated at the Cournot-Nash
equilibrium does depend upon n. In this case the Cournot-Nash equilibrium is unstable under best-reply
dynamics for n � 5 (see Ahmed and Agiza (1998) and Puu (2008)). Puu (2008) provides an example for
which the best-reply dynamics do remain stable when n increases, but he assumes that the cost function of
each �rm depends directly upon the number of �rms n: as the number of �rms increases the capacity of each
individual �rm is reduced, increasing its marginal costs.
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3 Evolutionary competition between adjustment pro-

cesses

Proposition 1 establishes that dynamic behavior under adjustment processes of the form (3)

is quite di¤erent from more sophisticated adjustment processes, such as rational or �ctitious

play, particularly when the number of �rms in the market is large. However, the latter typ-

ically require more cognitive e¤ort. In this section we introduce an evolutionary competition

between the di¤erent adjustment processes. For this we model our Cournot oligopoly as a

population game. That is, we consider a large population of �rms from which in each period

groups of n �rms are sampled randomly to play the one-shot n-�rm Cournot oligopoly. Firms

may use di¤erent adjustment processes and they switch between these processes according to

a general, monotone selection dynamic, capturing the idea that an adjustment process that

performs better is more likely to spread through the population of �rms. In this paper we

focus on the interaction between rational play and a single short-memory adjustment process

of the form (3).13 Denote by �t 2 [0; 1] the fraction of �rms in the population that is rational

in period t, with a fraction 1� �t using the short-memory adjustment process �from here on

we will refer to the latter as F -�rms. After each period, the fraction �t is updated and the

random matching procedure is repeated.

First consider the decision of a rational �rm that knows the fraction of rational �rms

in the population and the production decision of the F -�rms, but does not know the exact

composition of �rms in its market (or it has to make a production decision before observing

this). This �rm forms expectations over all possible mixtures resulting from independently

drawing n � 1 other players from a large population, each of which is either a rational or a

F -�rm. Rational �rm i therefore chooses quantity qi such that the objective function

n�1X
k=0

�
n� 1
k

�
�kt (1� �t)

n�1�k [P ((n� 1� k) qt + kqr + qi) qi � C (qi)] ;

13See Ochea (2010) for more examples, with similar qualitative results.
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is maximized. Here qr is the (symmetric) output level of each of the other rational �rms, and

qt is the output level of each F -�rm. The �rst order condition for an optimum is characterized

by equality between marginal cost and expected marginal revenue. We assume that, given

the value of qt, all rational �rms coordinate on the same output level qr.14 The �rst order

condition, with qi = qr, reads

n�1X
k=0

�
n� 1
k

�
�kt (1� �t)

n�1�k�

[P ((n� 1� k) qt + (k + 1) qr) + qrP 0 ((n� 1� k) qt + (k + 1) qr)� C 0 (qr)] = 0: (7)

Let the solution to (7) be given by qr = H (qt; �t).15 Note that if the F -�rms play the Cournot-

Nash equilibrium quantity q�, or if all �rms are rational, then rational �rms will produce q�

as well, that is H (q�; �t) = q�, for all �t and H (qt; 1) = q� for all qt. Moreover, a rational

�rm that is certain it will only meet F -�rms plays a best-reply to current aggregate output

of these F -�rms, that is H (qt; 0) = R ((n� 1) qt), for all qt.

We assume that F -�rms know the average quantity qt�1 played across the population of

�rms in period t� 1. We therefore obtain

qt = F
�
qt�1; (n� 1) qt�1

�
= F (qt�1; (n� 1) (�t�1H (qt�1; �t�1) + (1� �t�1) qt�1)) ; (8)

with the output of a rational �rm in period t given by qrt = H (qt; �t).

The evolutionary competition between adjustment processes is driven by the pro�ts they

generate. Taking into account that a rational �rm meets between 0 and n� 1 other rational
14In Droste, Hommes, and Tuinstra (2002) the terminology �Nash �rms�is used instead of �rational �rms�to

stress that these �rms do not only make a rational decision given their beliefs, but that they also successfully
coordinate on the appropriate quantity. In the present paper we will stick to the terminology �rational �rms�,
assuming implicitly that these �rms also coordinate on the output level.
15Note that in general the solution to (7) does not necessarily have to be unique, although it will be unique

under the standard assumptions of nondecreasing marginal costs and concave inverse demand. If, for some
qt and �t, there are multiple solutions to (7) we assume that the rational �rms are able to identify which of
these solutions corresponds to the global maximum of their pro�t function and coordinate on this solution,
which we then refer to as H (qt; �t).
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�rms, expected pro�ts for a rational �rm are given by

�R (q
r; q; �) =

n�1X
k=0

�
n� 1
k

�
�k (1� �)n�1�k [P ((k + 1) qr + (n� 1� k) q) qr � C (qr)] : (9)

Expected pro�ts �F (qr; q; �) for an F -�rm can be determined in a similar manner. If the

population of �rms and the number of groups of n �rms drawn from that population are large

enough average pro�ts will be approximated quite well by these expected pro�ts, which we

will use as a proxy for average pro�ts from now on. In addition, because the information re-

quirements for rational play are substantially higher than those for short-memory adjustment

processes, we allow for di¤erences in information or deliberation costs �R; �F � 0 required

to implement these types of behavior. Performance of rational and F -�rms is then evaluated

according to Vi = �i � �i where i = R;F .

The fraction �t of rational �rms evolves endogenously according to a dynamic which is

an increasing function of the performance di¤erential between the two adjustment processes,

that is

�t = G (VR;t�1 � VF;t�1) = G (�R;t�1 � �F;t�1 � �) ; (10)

where � � �R � �F is the di¤erence in deliberation costs, which we �given the information

requirements for rational play in a heterogeneous environment �assume to be nonnegative.16

The map G : R ! [0; 1] is a continuously di¤erentiable, monotonically increasing function

with G (0) = 1
2
, limx!�1G (x) = 0 and limx!1G (x) = 1.17 Note that it is straightforward

to generalize this approach to allow for other (and more than two) adjustment processes, or

to let it depend upon performance of these processes from earlier periods.

16Note that � does not necessarily only represent the di¤erence in information costs; it could also capture
a predisposition towards (or away from) rational play.
17The well-known discrete choice model, which is very popular in heterogeneous agent models (see e.g.

Brock and Hommes (1997)) and in the literature on quantal response equilibria (see e.g. McKelvey and
Palfrey (1995)) satis�es these properties. We will use this speci�cation in Section 4. Alternatively, one might
model the switching mechanism by an evolutionary process such as the replicator dynamics, as was done in
Droste, Hommes, and Tuinstra (2002). The replicator dynamics does not satisfy all the properties that we
impose upon G (�). However, simulations of our model with the replicator dynamics lead to similar stability
results and qualitatively the same type of dynamics, although the precise global dynamics may be somewhat
di¤erent.

13



The dynamics of the quantities and fractions are governed by equations (8) and (10). The

steady state of this dynamic system is (q�; ��), where q� is the Cournot-Nash equilibrium

quantity, and �� = G (��) is the fraction of rational players at the steady state. Because

market pro�ts are the same in equilibrium, this fraction depends only on the di¤erence in

information costs. We have the following stability result:

Proposition 2 The equilibrium (q�; ��) of the model with evolutionary competition between

rational play and short-memory adjustment process (3) is locally stable if:

(1� ��) (n� 1)
1� �� (n� 1)R0

�
Q��i

� < �1 + F �q
F �Q

: (11)

Proof. The variables qt and �t evolve according to

qt = �
1 (qt�1; �t�1) � F (qt�1; (n� 1) (�t�1H (qt�1; �) + (1� �t�1) qt�1)) ; (12)

�t = �
2 (qt�1; �t�1) � G(�R;t�1 � �F;t�1 � �):

Local stability of (q�; ��) is determined by the Jacobian matrix of (12), evaluated at (q�; ��).

First, we determine the partial derivatives of �2 with respect to qt�1 and �t�1, respectively.

To that end, note that we can write the pro�t di¤erential as

4�R = �R;t�1 � �F;t�1 =
n�1X
k=0

Ak (�t�1)Dk (qt�1; �t�1)

with Ak (�t�1) =
�
n�1
k

�
�kt�1 (1� �t�1)

n�1�k, which does not depend upon qt�1, and

Dk (qt�1; �t�1) = P
�
(n� 1� k) qt�1 + (k + 1) qrt�1

�
qrt�1 � C

�
qrt�1

�
�
�
P
�
(n� k) qt�1 + kqrt�1

�
qt�1 � C (qt�1)

�
;

which only depends upon �t�1 through qrt�1 = H (qt�1; �t�1). Note that Dk (q
�; ��) = 0.

Moreover, the partial derivatives of Dk (qt�1; �t�1), evaluated at the equilibrium (q�; ��) are
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given by

@Dk (qt�1; �t�1)

@qt�1

����
(q�;��)

= [P (Q�) + q�P 0 (Q�)� C 0 (q�)]
 
@H (qt�1; �t�1)

@qt�1

����
(q�;��)

� 1
!
= 0;

@Dk (qt�1; �t�1)

@�t�1

����
(q�;��)

= [P (Q�) + q�P 0 (Q�)� C 0 (q�)] @H (qt�1; �t�1)
@�t�1

����
(q�;��)

= 0;

where we use the fact that at the Cournot-Nash equilibrium the individual �rm�s �rst order

condition (1) is satis�ed. We now have

@�2

@qt�1

����
(q�;��)

= G0 (��) @ 4 �R
@qt�1

����
(q�;��)

= G0 (��)
n�1X
k=0

Ak (��)
@Dk (qt�1; �t�1)

@qt�1

����
(q�;��)

= 0

and

@�2

@�t�1

����
(q�;��)

= G0 (��) @ 4 �R
@�t�1

����
(q�;��)

= G0 (��)
n�1X
k=0

"
@Ak (�t�1)

@�t�1

����
��

Dk (q
�; ��) + Ak (��)

@Dk (qt�1; �t�1)

@�t�1

����
(q�;��)

#

= 0:

The Jacobian matrix of (12), evaluated at (q�; ��), therefore has the following structure

0B@ @�1

@qt�1

���
(q�;��)

@�1

@�t�1

���
(q�;��)

0 0

1CA ;

with eigenvalues �1 = @�1

@qt�1

���
(q�;��)

and �2 = 0. Hence, (q�; ��) is locally stable when

j�1j =
����� @�1@qt�1

����
(q�;��)

����� = ��F �q + (n� 1) ��H�
q + (1� �)

�
F �Q
�� < 1; (13)

where H�
q =

@H(qt�1;�t�1)
@qt�1

���
(q�;��)

. To determine H�
q we totally di¤erentiate �rst order condition
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(7):

n�1X
k=0

�
n� 1
k

�
�k (1� �)n�1�k (n� 1� k) [P 0 (Q�) + q�P 00 (Q�)] dqt+

n�1X
k=0

�
n� 1
k

�
�k (1� �)n�1�k [k (P 0 (Q�) + q�P 00 (Q�)) + 2P 0 (Q�) + q�P 00 (Q�)� C 00 (q�)] dqr:

Using
Pn�1

k=0

�
n�1
k

�
�k (1� �)n�1�k = 1 and

Pn�1
k=0

�
n�1
k

�
�k (1� �)n�1�k k = � (n� 1) and re-

arranging we �nd that

H�
q =

dqr

dqt
= � (1� �) (n� 1) (P 0 (Q�) + q�P 00 (Q�))

� (n� 1) (P 0 (Q�) + q�P 00 (Q�)) + 2P 0 (Q�) + q�P 00 (Q�)� C 00 (q�)

=
(1� �) (n� 1)R0

�
Q��i

�
1� � (n� 1)R0

�
Q��i

� ; (14)

where the last equality follows from the fact that from (1) the slope of the best-reply function

equals
dqi
dQ�i

= � P 0 (Q�) + qP 00 (Q�)

2P 0 (Q�) + q�P 00 (Q�)� C 00 (q�) :

Substituting (14) into condition (13) and rearranging gives condition (11).

Note that it follows from condition (11) that for a su¢ ciently large fraction of rational

players the Cournot-Nash equilibrium will be stable. On the other hand, from rearranging

condition (11) we �nd that a su¢ cient condition for instability is

n� �� (n� 1)
�
1 +R0

�
Q��i

��
1� �� (n� 1)R0

�
Q��i

� > 1�
1 + F �q
F �Q

(15)

Note that the right-hand sides of conditions (15) and (6) are the same, but that the left-

hand side of (15) is smaller than n (the left-hand side of (6)), provided �1 � R0
�
Q��i

�
� 0.

Introducing rational �rms in an environment with F -�rms therefore has a stabilizing e¤ect.

In the next section we will see that instability is still possible, and that the model with
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interaction between rational play and a short-memory adjustment process may actually give

rise to complicated and unpredictable dynamics.

4 Rational play versus best-reply: global dynamics and

perpetual bounded �uctuations

In this section we study the global dynamical behavior of the model discussed in Section 3

where for the short-memory adjustment process we take the best-reply dynamics, F (qi; Q�i) =

R (Q�i). This choice is supported by evidence from laboratory experiments that suggests

that best-reply dynamics is relevant in human decision making. Cox and Walker (1998),

for example, present an experiment on Cournot duopoly with linear demand and quadratic

costs where participants� quantity choices fail to converge to the (interior) Cournot�Nash

equilibrium when that equilibrium is unstable under best-reply dynamics. Also Rassenti,

Reynolds, Smith, and Szidarovszky (2000) and Huck, Normann, and Oechssler (2002) �nd

that a Cournot-Nash equilibrium that is unstable under best-reply dynamics will not be

reached by human subjects.

Applying Proposition 2 to best-reply dynamics (that is, F �q = 0 and F
�
Q = R

0 �Q��i� < 0)
and using �0 = 1

2
we �nd that the Cournot-Nash equilibrium is locally stable for any number

of �rms if there are no information costs for rational play:

Corollary 3 Let P 0 (Q�) + q�P 00 (Q�) < 0. Then the equilibrium (q�; ��) of the model of

endogenous switching between rational play and best-reply dynamics is locally stable if

(1� 2��) (n� 1)R0
�
Q��i

�
> �1: (16)

Moreover, in the absence of a di¤erence in information costs, � = 0, the equilibrium (q�; �0)

is locally stable for all n � 2.
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To investigate global dynamics we need to specify the demand and cost structure, as

well as the switching mechanism. We will use linear demand P (Q) = a � bQ, and costs,

Ci (qi) = cq, with a > c � 0 and b > 0. The reaction curve then becomes

qi = Ri (Q�i) = q
� � 1

2
(Q�i � (n� 1) q�) ; (17)

with q� = a�c
b(n+1)

the unique Cournot-Nash equilibrium. Furthermore, given qt and �t, rational

�rms in period t coordinate on the solution to equation (7) which is

qrt = H (qt; �t) = q
� � (1� �t) (n� 1)

2 + (n� 1) �t
(qt � q�) : (18)

It can be easily checked that qt = R ((n� 1) (�t�1H (qt�1; �t�1)) + (1� �t�1) qt�1) =

H (qt�1; �t�1) = qrt�1, that is, in each period best-reply �rms produce the quantity that ra-

tional �rms produced in the period before, illustrating the information advantage of the latter.

From equation (18) we see that rational �rms respond to best-reply �rms by choosing a high

(low) production level when production of best-reply �rms is low (high) in that period.18 Ra-

tional �rms therefore partially neutralize the instability created by best-reply �rms. However,

if the equilibrium fraction �� of rational �rms in the population is too small, or the number

of �rms n in a market su¢ ciently large, the Cournot-Nash equilibrium will still be unstable,

as can be seen by condition (16) which, for the current speci�cation, reduces to

(1� 2��) (n� 1) < 2: (19)

We model evolutionary competition by the discrete choice dynamics (see e.g. Brock and

Hommes (1997)):

G (�R;t�1 � �F;t�1 � �) =
1

1 + exp [�� (�R;t�1 � �F;t�1 � �)]
: (20)

18In fact, the production level of rational �rms will lie between q� and R ((n� 1) qt). To be speci�c, for
� 2 (0; 1) and qt 6= q� we either have R ((n� 1) qt) < H (qt; �) < q� < qt orR ((n� 1) qt) > H (qt; �) > q� > qt.
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The parameter � � 0 measures the intensity of choice: for a higher value of � �rms are

more likely to switch to the more successful adjustment process from the previous period. A

straightforward computation shows that the pro�t di¤erence is given by

�R;t � �F;t = b
�

n+ 1

2 + (n� 1) �t

�2
(qt � q�)2 :

Note that, abstracting from information costs �, average pro�ts of rational �rms are always

higher than those of the best-reply �rms. The di¤erence increases with the deviation of qt

from its equilibrium value and decreases with the fraction of rational �rms. The full model

with endogenous switching between rational and best-reply behavior is

qt = q
� � (1� �t�1) (n� 1)

2 + (n� 1) �t�1
(qt�1 � q�) ; (21)

�t =
1

1 + exp

�
��
�
b
�

n+1
2+(n�1)�t�1

�2
(q� � qt�1)2 � �

�� ;

with the equilibrium given by (q�; ��) =
�

a�c
b(n+1)

; [1 + exp [��]]�1
�
. This equilibrium is locally

stable when condition (19) holds. This condition is always satis�ed for �� � 1
2
or n � 3 but

for n > 3 the Cournot-Nash equilibrium becomes unstable if the fraction of rational �rms in

equilibrium is too low, with the critical value for � given by

�t < � =
1

2

n� 3
n� 1 : (22)
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Figure 1: Upper panel: stability curve for rational vs. best-reply �rms in (��, n) space.
When the stability curve is crossed from below the interior Cournot-Nash equilibrium loses
stability and a two-cycle is born. Lower panel: stability curves for rational play versus gradient
learning, for di¤erent values of ��

As is already clear from Corollary 3 the equilibrium is always locally stable in the absence

of information costs, � = 0 (note that � < �0 = 1
2
for all n). However, for any n > 3 there exist

an intensity of choice � and information costs � such that the equilibrium becomes unstable,

because the fraction of rational �rms in equilibrium is too small. In fact, the equilibrium is

unstable for all n � 4 when �� < 1
6
, that is, whenever � � � > ln 5 � 1:609.

The trade-o¤ between evolutionary pressure and the number of �rms n in the market for

which the equilibrium is stable is illustrated in the upper panel of Figure 1. This �gure plots

the period-doubling bifurcation curve, where, for convenience, we interpret n as a continuous
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variable.19 For combinations of �� and n to the north-east of the curve the equilibrium is

unstable.

The dynamics can become quite complicated when the equilibrium is unstable. Figure

2 shows the results of some representative numerical simulations of the model with a = 17,

b = 1, c = 10, � = 5 and � = 1
2
. Note that in this case �� =

�
1 + exp

�
5
2

���1 � 0:076

and the equilibrium will be unstable for any n > 3. Panel (a) shows a bifurcation diagram

for n = 2 to n = 8, establishing that a stable period two cycle exists for n = 4 and more

complicated behavior emerges for larger values of n. Panels (b)-(d) show the dynamics of

quantities, pro�t di¤erences and fractions for n = 8, respectively.20 Note that close to the

equilibrium (in fact, when jqt � q�j < 1
9

p
2
�
1 + 7

2
�t
�
) best-reply �rms do better than rational

�rms because they do not have to pay information costs and the di¤erence in average market

pro�ts is relatively small. This decreases the fraction of rational �rms, which destabilizes the

quantity dynamics. As the dynamics moves away from the equilibrium, eventually rational

�rms outperform best-reply �rms and more �rms become rational again, increasing �t. Now,

when �t > � = 5
14
(the horizontal dashed line in panel (d)) the quantity dynamics stabilizes

again and quantities converge to their Cournot-Nash equilibrium level, and the whole story

repeats. Panel (f) shows that, for n = 8; the largest Lyapunov exponent is strictly positive if

the intensity of choice � is high enough, indicating chaotic behavior.

19For a discussion on these period-doubling thresholds for more general learning rules, i.e. adaptive expect-
ations and �ctitious play, see Chapter IV in Ochea (2010).
20Observe that the dynamics of quantities have a smaller amplitude and are much less regular than they

would be under pure best-reply dynamics. In that case (under symmetric initial conditions) individual quant-
ities would �uctuate in a period-two cycle between 0 and 1

2 (n+ 1) q
�.
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(a) Bifurcation diagram (qt; n)
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(c) Rational pro�ts di¤erential
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(e) Phase plot (qt;�t); n = 8
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Figure 2: Linear n-player Cournot game with rational vs. best-reply �rms. Panel (a) depicts a
sequence of period-doubling bifurcations as the number of players n increases. Instability sets
in already for the triopoly game. Panel (b)-(d) display oscillating time series of the quantity
chosen by the best-reply �rm, the pro�t di¤erential (net of information costs � = 0:5) and
the fraction of rational �rms, respectively. The threshold fraction of rational �rms � = 5=14
for which the dynamics become stable is also marked in Panel (d). A typical phase portrait
is shown in Panel (e) while Panel (f) plots the largest Lyapunov exponent for increasing �.
Game and behavioral parameters: n = 8; a = 17; b = 1; c = 10; � = 0:5; � = 5:
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5 Discussion

In this paper we introduced a model of evolutionary competition between di¤erent adjustment

processes in Cournot oligopoly. We focused on the interaction between rational play and a

single adaptive adjustment process. The availability of rational play stabilizes the dynamics:

although the Cournot-Nash equilibrium will typically still be unstable if the number of �rms

is su¢ ciently high, the stability threshold increases. For the special case of rational play

versus best-reply dynamics we �nd that the Cournot-Nash equilibrium is locally stable for any

number of �rms if, in the equilibrium of the evolutionary model, at least half of the population

of �rms uses rational play.21 However, this does not generalize to other adjustment processes.

The lower panel of Figure 1 shows stability curves for rational play versus gradient learning

(for the case of linear demand and costs) where the horizontal axis shows the normalized

speed of adjustment parameter b� and the vertical axis shows market size n.22 The lowest

curve demarcates the stability region when all �rms use gradient learning (for combinations

of b� and n to the north-east of this curve the Cournot-Nash equilibrium is unstable) and the

highest curve characterizes stability in the case where, in equilibrium, half of the population of

�rms is rational. It follows immediately that the stability region increases with ��, although,

even for �� = �0 =
1
2
(and b� > 1

2
) one can always �nd a market size n such that the

Cournot-Nash equilibrium is unstable.

For the case of rational play versus best-reply dynamics the dynamics of the evolutionary

21One would expect the number of rational �rms to be lower in equilibrium however, since in equilibrium
best-reply �rms can free ride on the rational �rms: they produce the same quantity, but do not incur the high
information costs.
22Gradient learning, for P (Q) = a� bQ and C (q) = cq, is given by

qi;t+1 = (1� 2b�) qi;t + � [a� c� bQ�i] :

Note that
��F �q �� < 1, from Assumption A, requires b� < 1. The critical value for n implied by stability

condition (11) then becomes

nGD =
2� b�� ��
b�� ��

:

The equilibrium (q�; ��) is locally stable as long as b� � ��. For any �� < 1 and b� 2 (��; 1) we can always
�nd n large enough such that the equilibrium is unstable. In particular, in the absence of information costs
for rational play, the equilibrium will be unstable for n > (3� 2b�) = (2b�� 1) and b� > 1=2.
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model can give highly irregular, perpetual but bounded �uctuations, even if demand and

costs are linear. Complicated dynamics have been established in Cournot models before, but

typically require non-monotonic reaction curves, which are not standard. In our model the

bounded �uctuations are created naturally by the interaction of di¤erent adjustment processes

and the increase in the number of �rms.

The analysis provided in this paper can be extended by considering other adjustment

processes, although this will lead to qualitatively similar results.23 In addition, our results

are robust against changing the speci�cs of the switching mechanism. For example, replacing

the discrete choice model (20) by the well-known replicator dynamics (as in Droste, Hommes,

and Tuinstra (2002)), the dynamics remains qualitatively the same. Finally, continuous-time

processes typically generate stable equilibria for a wide array of adjustment processes24, at

least for Cournot oligopoly with linear demand and costs and an arbitrary number of �rms. It

remains an open question whether continuous-time processes with evolutionary competition

between adjustment processes can generate complicated dynamics in such an environment.
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