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Abstract

In this paper, we propose estimating multiple break-points in panel data with fixed effects

by ordinary least-squares. We show that, despite the endogeneity bias of the slope estimators,

the break-point estimators are consistent as N → ∞ provided a reasonable time homogeneity

condition holds. We also propose an information criterion that selects the true number of

breaks with probability one in the limit.

In addition to multiple breaks, we allow for time dependence in the errors. These two

features may decrease the asymptotic efficiency of the usual fixed-effects slope estimators

relative to other estimators. We study two other slope estimators and show that their relative

efficiency may be higher than of the usual fixed-effects estimator even for iid data. We illustrate

our findings via a simulation study. 1

1 Introduction

This paper proposes estimating multiple break-points in panel data models with fixed effects

via ordinary least-squares (OLS). Typically, OLS slope estimators are inconsistent due to the

unobserved, individual heterogeneity bias. However, we show that as long as a reasonable time-

homogeneity condition holds, this bias has no impact on the consistent estimation of break-points.

There is a growing literature on estimation of common break-points in panel data models.

Breaks in panels may be due to financial crises, policy changes, housing bubbles, technological

changes, to mention just a few causes.
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Regarding break-point detection, Emerson and Kao (2001, 2002) and de Wachter and Tzavalis

(2012) propose tests for the presence of breaks in (dynamic) panel data models and derive their

asymptotic distribution. Regarding break-point estimation, there are different methods that

were recently proposed. Using a panel data model with no covariates, Bai (2010) shows that the

common break can be treated as a mean-shift and estimated via OLS. Feng, Kao and Lazarová

(2009) and Baltagi, Kao and Liu (2015) propose OLS estimation of one common break in the slope

parameters of a panel data regression model without individual specific effects. In the presence

of fixed effects, they propose first-differencing (FD) the data prior to break point estimation;

Baltagi, Kao and Liu (2015) show that the break-point estimator on the first-differenced data is

consistent for N,T → ∞. Adaptive group-fused LASSO (AGFL) estimators of the break-points

in the first-differenced data are proposed in Qian and Su (2016). They derive conditions under

which the adaptive group fused LASSO delivers the true number and location of break-points

with probability one in the limit, with N → ∞ and T fixed or T → ∞. Qian and Su (2016)

also derive the asymptotic properties of the post-LASSO first-difference parameter estimators

with N → ∞ and T fixed or T → ∞. All these studies assume no cross section dependence

and homogeneous panels. For cross-section dependence in the form of interactive fixed effects

(heterogeneous panels), Li, Qian and Su (2015) propose estimating the number and location of

break-points via a penalized principal component estimation with AGFL, and show that their

method detects the true number and location of break-points with probability tending to one as

N → ∞. Baltagi, Feng and Kao (2016) allow for heterogeneous (random coefficient) slopes with

breaks and propose (common-correlated effects) CCE estimation of the multiple break-points.

They show that this method can also consistently estimate break-points, as N,T → ∞.

All these papers start from the premise that since the OLS slope estimators are inconsistent

due to fixed effects, these fixed effects need to be removed before break-point estimation. In con-

trast to these studies, our paper shows that the fixed effects need not be removed for consistency

of break-point estimators.

Thus, our first contribution is to show that the OLS estimators of the break-points in ho-

mogeneous panels with fixed effects, like their AFGL or FD counterparts, are also consistent

with N → ∞ and T fixed, as long as a reasonable time homogeneity condition holds, known as

the Mundlak assumption.2 The intuition is that even though the OLS slope estimators at each

2This time homogeneity implies that we cannot allow for lagged dependent variables. But we do allow for the
regressors and the errors to be weakly time-dependent. There are many examples where the time homogeneity
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candidate break-point partition are inconsistent, the overall asymptotic bias in the OLS objective

function is the same regardless of the break-point partition considered. Therefore, the endogene-

ity bias is irrelevant for minimizing the OLS criterion over different break partitions, yielding

consistent estimators of the true break partition. A similar intuition can be found in Perron and

Yamamoto (2013) for time series, although their endogeneity source is different.

Unlike current methods, our method can also detect a break-point in the first time period,

and should be more accurate in finite samples because it doesn’t remove sample information. To

select the number of breaks, we propose an information criterion similar to BIC; we show that it

correctly detects the number of break-points with probability tending to one as N → ∞ and T

is fixed.

Our second contribution is to show that the presence of breaks alters the usual intuition that,

for example, the fixed-effects slope estimators are the most efficient when the data in the level

equation is weakly dependent. To our best knowledge, the efficiency of slope estimators has not

been analyzed before in the context of breaks. For example, Qian and Su (2016) and Baltagi,

Feng and Kao (2015) both propose FD estimators, but these are known to be inefficient when

the errors in the level equation are not unit root.

We assume weak time dependence in the level data and analyze three estimators and their

asymptotic distributions. All these estimators are consistent, since they are all based on removing

the fixed effects. But the way they are removed changes the underlying moment conditions

and therefore the asymptotic variance of these estimators. The first one is the conventional

fixed-effects (FE) estimator, obtained by demeaning the data before and after the break, and

estimating the slopes in each subsample with demeaned data. The other two estimators are new:

one of them (IV) uses the demeaned regressors as instruments in the level equation, and the

other (FFE) first demeans the data over the full sample rather than subsamples, then estimates

the slopes before and after the break jointly in this transformed equation. We show that with

general weak dependence patterns, they cannot be further compared; in this case, stacking the

moment conditions from the three estimators might be best. With iid mean-zero regressors and

idiosyncratic errors (the most common setting), the FFE estimator is the most efficient, and not

condition holds, or more precisely when the impact of the fixed effects on the regressors and dependent variables
does not diminish over time, especially when the number of periods is small. For example, in modelling the decision
to buy a house, the initial impression of a neighborhood may influence both the subjective valuation of the house
and the decision to buy a house in that neighborhood in the same way over different periods. In a growth regression,
the initial quality of institutions can have the same persistent impact on both corruption and growth for many
periods.
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the FE estimator, because it uses more information from adjacent subsamples. If we also have

random effects instead of fixed effects, both the FFE and IV estimators are more efficient than

the FE estimator.

The rest of the paper is organized as follows. Section 2 introduces the model with individual

fixed effects and a common break. Section 3 covers the properties of the OLS break point

estimators of multiple breaks. Section 4 proposes an consistent information criterion to select the

number of breaks. Section 5 derives the asymptotic propoerties of both the OLS slope estimators

and the three estimators proposed. It also compares their asymptotic efficiency in special cases.

Section 6 studies the finite-sample properties of the break point and slope estimators. Section 7

concludes. All the proofs are relegated to the Appendix.

Notation: Matrices and vectors are denoted with bold symbolds, and scalars are not. Define

for a scalar S, the generalized vec operator vec1:S(As)
def
= (A′

1, . . . , A
′
S)′, stacking in order the ma-

trices As, (s = 1, . . . , S), which have the same number of columns. If S is the number of breaks, let

T0 = 0, TS+1 = T , with T the sample size, and let TS = (T0,vec1:m(Ts), TS+1) be a sample par-

tition of interval [1, T ] into subsamples defined by 0 < T1 < T2 . . . < TS < T , and define the inter-

vals Is = [Ts−1+1, Ts] for s = 1, . . . , S+1. Let X = vec1:T (Xt) be the NT ×p matrix that stacks

Xt = vec1:N (x′
it) in order. Call X̃ = diag(vec1:T1(Xt),vecT1+1:T2(Xt), . . . ,vecTm+1:Tm+1(Xt))

the diagonal partition of X at TS , with X1, . . . , XT on the diagonal and the rest of the ele-

ments zero. For any random vector z, denote by |z| the Euclidean norm, and by ‖z‖p = (E|z|p)1/p

the Lp norm.

2 Model

Assume that the true model is piecewise-linear with m0 breaks:

yit = x′
itβ

0
j + ci + εit, t ∈ I0

j , j = 1, . . . ,m0 + 1. (1)

In (1), i are cross-sections, t for time, i = 1, . . . , N with N → ∞, and t = 1, . . . , T , with T fixed.

Also, yit is a scalar observed dependent variable; xit is a p× 1 observed vector of regressors that

can be constant over time but vary across individuals; m0 is the true unknown number of break-

points with 1 ≤ m0 ≤ T − 1, T 0
j , (j = 1, . . . ,m0) are the true unknown break points belonging

to the sample partition T 0
m0 = (T 0

0 ,vec1:m0(T 0
j ), T 0

m0+1), where T 0
0 = 0 and T 0

m0+1 = T . Also, β0
j
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are unknown p×1 parameters of interest in intervals I0
j , (j = 1, . . . ,m0+1), where β0

j 6= β0
s for all

s 6= j, and εit are unobserved mean-zero idiosyncratic errors, uncorrelated with the unobserved

individual specific effects ci. We assume that ci are mean-zero fixed effects (E(ci) = 0 and

E(cixit) = ai). Random effects are a special case, when ai = 0 for all i. As equation (1) suggests,

we do not include time-fixed effects in our model. If they would be included as time-dummies,

they would be equivalent to breaks in the intercept at each time-period.

Consistently estimating the number of breaks m0 is important and discussed in Section 4.

For now, assume that the number of breaks m0 is known, and we are interested in estimating the

unknown break-points T 0
m0 and the parameters β0

j .

Contrary to other papers, we propose estimating the true partition T 0
m0 by pooled least-

squares (OLS). We show that the corresponding OLS estimator T̂m0 is consistent when N → ∞,

for any fixed T . The key assumption is Assumption 1(iv) below. It states that the limiting

cross-section average covariance between the regressors and the individual effects is constant over

time, also known as the Mundlak assumption. This assumption is trivially satisfied for random

effects, because in this case the covariance is zero for each time period. This assumption is also

reasonable for certain fixed effects settings, because there are many instances where the initial

impact of the fixed effects on the regressors is the same (initial impression, wealth, knowledge,

etc.) even when the regressors evolve over time. This is especially the case when T is small. We

do not allow for dynamics in the form of lagged dependent variables, because then, by definition

of a dynamic panel with fixed effects, the covariance between these and the individual effects

changes over time, violating Assumption 1(iv). However, we do allow for dynamics in the errors

εit and regressors xit.

To describe the OLS break-point estimator T̂m0 , write the model in a more compact form by

letting uit = ci + εit, u = vec1:T (vec1:N (uit)), β0 = vec1:m0+1(β
0
j ), y = vec1:T (vec1:N (yit)), and

X̃0 the diagonal partition of X at the true partition T 0
m0 . Then, we can write model (1) as:

y = X̃0β0 + u. (2)

We estimate (2) by minimizing the sum of squared residuals over all sample partitions Tm0 ,

or regressing y on X̃:

min
Tm0

SNT (Tm0)
def
= min
Tm0

(NT )−1
(
y − X̃β̂OLS(Tm0)

)′ (
y − X̃β̂OLS(Tm0)

)
, (3)
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where β̂OLS(Tm0) = (X̃ ′X̃)−1X̃ ′y is the OLS estimator using Tm0 as the candidate partition.

Let β̂OLS(Tm0) = vec1:m0+1(β̂OLS,j(Tm0)), where the OLS estimator β̂OLS,j(Tm0) is the OLS

estimator for β0
j , given partition Tm0 .

The minimizer of the above problem is denoted T̂m0 , and we refer to it as the OLS break point

estimators. If the minimizer is not unique, we break the tie by picking the smallest minimizer as

our estimator T̂m0 . The OLS estimator of β0 at the estimated partition is denoted by β̂OLS =

β̂OLS(T̂m0) = vec1:m0+1(β̂OLS,j(T̂m0)).

Even if the true partition T 0
m0 was known, the OLS estimator β̂OLS(T 0

m0) based on that

partition would still suffer from endogeneity bias, due to the fixed effects. However, we show below

that under the Mundlak assumption, regardless of the partition Tm0 considered, the endogeneity

bias is asymptotically the same for all β̂OLS,j(Tm0), and will increase the averaged sum of squared

residuals SNT (Tm0) by the same amount asymptotically, regardless of the partition considered.

Hence, just as in the case of no individual effects, SNT (Tm0) is asymptotically uniquely minimized

at T 0
m0 when N → ∞. This is the intuition behind the consistency of the OLS break-point

estimators T̂m0 , derived in the next section. 3’4

3 Break Point Estimators

In this section, consistency of the OLS break-point estimators T̂m0 , when N → ∞ and T is fixed.

Rather than proceeding with high-level assumptions on the data that are difficult to verify,

as in Qian and Su (2014), Assumption A3, we chose to use simple primitive assumptions on the

data because they are easier verified by practitioners, whether intuitively or through testing.

Assumption 1. For all i = 1, . . . , N , and t, s = 1, . . . , T ,

(i) {x′
it, ci, εit}T

t=1 is independent over i;

(ii) supi∈N E|xit|2+ξ < ∞ for some ξ > 0, and N−1
∑N

i=1 E[xitx
′
it] → Q, where Q is a positive

definite (pd) matrix not depending on i or t;

(iii) E[εit] = 0, E[ε2
it] = σ2

ε , supi∈N E|εit|2+ξ < ∞ for some ξ > 0, and E[xisεit] = 0;

(iv) E[ci] = 0, E[c2
i ] = σ2

c , supi∈N E|ci|2+ξ < ∞ for some ξ > 0, and E[xitci] = ai , with

1
N

∑N
i=1 ai → a ;

3Perron and Yamamoto (2013) use a similar intuition to propose an ordinary least-squares break point estimation
method in time series models with endogenous regressors.

4If T → ∞, we can allow E[xitci] to vary over time, and we conjecture that all our results go through, as long
as the time variation in E[xitci] is o(T−γ) uniformly in i, for some γ > 0.
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(v) εit is independent of ci.

Assumption 1(i) states that the data are independent over i, as in most papers on panel

break-points - Feng, Kao, Lazarová (2009), Bai (2010) and Qian and Su (2014). This applies, for

example, to survey data. As discussed before, E[xitci] = ai is the Mundlak assumption. Note

that this allows for the presence of time-invariant regressors.

The assumption that the (2 + ξ)-moments exist is a technical requirement for applying the

Weak Law of Large Numbers (WLLN). The time-homnogeneity assumption on the second mo-

ments, i.e. N−1
∑N

i=1 E[xitx
′
it] → Q, while quite common, is also necessary in establishing that

the endogeneity bias in the residual sum of squares does not vary over time and partitions. A

similar assumption can be found in Perron and Yamamoto (2013). The rest of the assumptions

are also common for panel data. We further note that since we only study the case N → ∞, we

can allow for diverse forms of serial dependence in xit and εit. However, we do not allow for xit

or εit to be a unit root; this is implied by Assumption 1(ii) and (iii).

The following lemma is helpful in establishing consistency of the OLS break-point estimators.

Lemma 1. Under Assumption 1, the following holds for each t:

(i) N−1
∑N

i=1 xitx
′
it

p
→ Q;

(ii) N−1
∑N

i=1 xitci
p
→ a;

(iii) N−1
∑N

i=1 xitεit
p
→ 0;

(iv) N−1
∑N

i=1 u2
it

p
→ σ2

ε + σ2
c .

This lemma follows from standard application of the WLLN. Although Theorem 1 below is

shown under Assumption 1, it can be also proved using Lemma 1 alone. Thus, if one wishes to

start from high-level assumptions, Lemma 1 is sufficient for the results in Theorem 1. Therefore,

it also applies to some models with interactive fixed effects. To see that, suppose we replace

ci by cift, where ci and ft are unobserved scalar random variables, independent of each other,

and E(ci) = 0. Then as long as E(xitcift) does not vary with t, Lemma 1(ii) may hold by some

WLLN. Also, E(u2
it) = E(ε2it) + E(c2

i )E(f2
t ). So as long as E(f2

t ) is constant over t, a common

assumption in interactive fixed-effects models, Lemma 1(iv) will hold as well.

We can now state the properties of the break point estimator T̂m0 . Let δ0 = β0
1 − β0

2 6= 0,

and:

S∗
NT (Tm0)

def
= (σ2

ε + σ2
c − a′Q−1a) + (NT )−1β0X̃0′M

X̃
X̃0β0 (4)
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Theorem 1. [Consistency of the OLS Break Point Estimator]

Under Assumption 1, with N → ∞ and T fixed, and 1 ≤ m0 ≤ T − 1

(i) SNT (Tm0) − S∗
NT (Tm0)

p
→ 0;

(ii) plim(SNT ) is uniquely minimized at T 0
m0 ;

(iii)P (T̂m0 = T 0
m0) → 1.

This theorem states that the OLS break point estimator is consistent. For the same OLS

estimator, a similar result is derived in Feng, Kao and Lazarová (2009) and Baltagi, Kao and

Liu (2015) for iid data without individual effects. The same result as ours is also in Bai (2010),

Theorem 3.1, but for a break in individual-specific means, without any regressors. To our knowl-

edge, this is the first paper that establishes the properties of the OLS break point estimator in

panel data when fixed effects are present. FD break-point estimators are considered in Qian and

Su (2016) and Baltagi, Kao and Liu (2015).

In contrast to time series, Theorem 1 shows that we can locate the true break-points T 0
m0

with probability tending to one. This is due to a large number of observations N at each point

in time. A large N also allows us to consider break-points at any locations in the sample, even

in adjacent periods. In contrast to Qian and Su (2016) and Baltagi, Kao and Liu (2016), we can

also allow for breaks in the first period.

Theorem 1 also shows that there are two bias terms in plim(S∗
NT (Tm0)) and therefore in the

sum of squared residuals plim(S∗
NT (Tm0)). The first bias term, (−a′Q−1a), is the same regardless

of the partition Tm0 considered, and it arises because of the endogeneity bias of the OLS estimators

β̂OLS(Tm0). Therefore, asymptotically, the endogeneity bias does not play a role in the estimation

of the break-point partition. The second bias term, plim((NT )−1β0X̃0′M
X̃

X̃0β0, varies with

the partition considered, and is uniquely minimized at the true partition T 0
m0 ; therefore, the

break-point estimator is consistent.

4 Estimating the Number of Break Points

In the previous section, we assumed that the number of break-points m0 is known. In practice,

it is unknown and must be estimated from the data. We propose estimating m0 via the following

information criterion:

m̂
def
= arg min

m∈{1,...,T−1}
IC(m), IC(m) = log SNT (T̂m) + [p(m + 1) + 3m]

log(NT )
NT

(5)
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This is similar to BIC: we penalize for the number of parameters p(m + 1), and the break-points

are worth three times a regular parameter: (3m). This is motivated by the bias calculations in

Nimomiya (2005). Hall, Osborn and Sakkas (2013) show that this criterion is more accurate than

the BIC in estimating the true number of breaks in time series. We replaced their sample size by

our effective sample size NT .

We expect that under Assumption 1, P (m̂ = m0) → 1 as N → ∞ (proof in progress).

Because of this consistency result, unlike sequential testing, asymptotically there is no impact of

this model selection procedure, so the estimated number of breaks can be treated as known when

estimating the break-point locations. Note again that the endogeneity bias has no impact on the

model selection procedure under Assumption 1.

In practice, evaluation of such a criterion requires calculation of the sum of squared residuals

for a bit less 2T partitions; while T is small, 2T may still seem large. However, because we use the

Bai and Perron (2003) dynamic programming algorithm, which stores and reuses sum of squared

residuals calculated over different subsamples, subsamples which repeat over partitions with dif-

ferent m, the computational cost is greatly reduced, and the program runs fast for example, for

m,T ≤ 20 and N = 500.

5 Slope Estimators and Their Asymptotic Properties

To facilitate presentation, we focus on the case m0 = 1 from here onwards, and we treat m0 = 1

as known (a consistent estimator is provided in the previous section).5

5.1 OLS Estimators

In this section, we analyze the OLS estimators of β0. Recall that β̂OLS,1 and β̂OLS,2 are the

first and the last p elements in β̂OLS , and let k0 def
= T 0

1 . As expected, the OLS estimators are

inconsistent due to the fixed effects bias. However, we prove below that the asymptotic bias is the

same for the first and the second sub-sample, so that the OLS estimator δ̂OLS = β̂OLS,1 − β̂OLS,2

of the difference δ0 is consistent. We impose the following assumption:

Assumption 2. (i) supi∈N E|xit|4+ξ < ∞, supi∈N E|uit|4+ξ < ∞ for some ξ > 0;

(ii) limN→∞

(
N−1

∑N
i=1 E[xitx

′
isuituis]

)
= Wt,s.

5All these results feature straightforward generalizations to multiple break-points, without much further insight.

9



This assumption is standard and needed for the central limit theorem. Let:

ΔN,β
def
=

(

a′
(
(Nk0)−1

∑N
i=1

∑k0

t=1 xitx
′
it

)−1
, a′

(
(N(T − k0))−1

∑N
i=1

∑T−k0

t=1 xitx
′
it

)−1
)′

;

ΔN,δ
def
=

[(
(Nk0)−1

∑N
i=1

∑k0

t=1 xitx
′
it

)−1
−
(
(N(T − k0))−1

∑N
i=1

∑T−k0

t=1 xitx
′
it

)−1
]

a;

Wxu =




T−2

∑k0

t,s=1(Wt,s − aa′) T−2
∑k0

t=1

∑T
s=k0+1(Wt,s − aa′)

T−2
∑T

t=k0+1

∑k0

s=1(Wt,s − aa′) T−2
∑T

t,s=k0+1(Wt,s − aa′)





Ωβ
def
=




k0T−1Q 0

0 (T − k0)T−1Q





−1

Wxu




k0T−1Q 0

0 (T − k0)T−1Q





−1

Ωδ
def
= (Ip,−Ip)Ωβ(Ip,−Ip)′, with Ip the p × p identity matrix.

Theorem 2. [OLS Estimators]

Under Assumptions 1 and 2, when N → ∞ and T is fixed,

(i)
√

N(β̂OLS − β0 − ΔN,β)
d
→ N (0,Ωβ); (ii)

√
N(δ̂OLS − δ0 − ΔN,δ)

d
→ N (0,Ωδ).

It follows from Lemma 1(i) that plimN→∞ΔN,δ = Q−1a − Q−1a = 0, so the OLS estimator

of the difference δ0 is consistent as long as N → ∞, even if β̂OLS is not consistent. It can also

be seen from this theorem that β̂OLS is not consistent for β0. If we let N → ∞ for ΔN,β, the

asymptotic bias is equal to Q−1a for both estimators of β0
1 and β0

2, and does not equal zero

unless the individual effects are exogenous (a = 0).

This theorem also implies that although δ0 can be consistently estimated using OLS, OLS

inference is infeasible because of the presence of a in ΔN,δ and Ωδ, unidentified without further

assumptions. Therefore, we propose alternative methods for inference on both β0 and δ0 below.

5.2 Consistent Estimators

Given a consistent break point estimator k̂ that satisfies P (k̂ = k0) → 1 (whether it is the

estimator we propose or a different estimator such as the one in Qian and Su (2016) or Baltagi,

Kao and Liu (2016)), we seek consistent estimators of β0
1, β

0
2. The results in this section can be

applied to any break point estimator k̂ that satisfies P (k̂ = k0) → 1 and are not specific to the

OLS estimator proposed in the previous section.

To get consistent estimators of the slope parameters, we need to resort to some method to

either remove the fixed effects, as is common in the panel data literature, or to instrument the
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endogenous regressors xit. Since we assume that E[xisεit] = 0 for all i, t, s, any method that

would either instrument or remove ci (e.g. by first-differencing or demeaning of xit) would yield

consistent estimators.

To our best knowledge, we are the first to provide a comparison between three different

estimators in the presence of weak time-dependence in εit.

With no breaks, estimating the demeaned (1) is known to yield the most efficient estimators

of the slope parameters - see Wooldridge (2002).6 In the presence of a break, the equivalent fixed

effects estimator would be to demean (1) over sub-samples [1, k0] and [k0 + 1, T ] and estimate

this transformed model. This is our first estimator (FE), which replaces k0 by k̂. Even when

the errors εit are iid, we show that another two estimators can be more efficient. These two new

estimators are described below and are specific to the presence of breaks.

Our second estimator (IV) demeans the regressors over the full-sample, and uses them as

instruments in the initial equation. Our third estimator (FFE) demeans (1) over the full-sample,

then estimates the transformed model over the full-sample. Below, we describe these estimators

and compare their asymptotic properties.

Additional notation. Define I0
1 = {1, . . . , k0}, I0

2 = {k0 + 1, . . . , T }, Î1 = {1, . . . , k̂} and

Î2 = {k̂ + 1, . . . , T }. Let
∑

1 =
∑k0

t=1 and
∑

2 =
∑T

t=k0+1 be the summation over, respectively,

the first and the second true regimes. Let
∑

1̂ =
∑k̂

t=1 and
∑

2̂ =
∑T

t=k̂+1
be the summation

over, respectively, the first and the second estimated regimes. Let xi = T−1
∑T

t=1 xit be the full

sample average, x0
i,1 = (k0)−1

∑
1 xit and x0

i,2 = (T −k0)−1
∑

2 xit be the subsample averages over

the two true regimes, and xi,1 = k̂−1
∑

1̂ xit and xi,2 = (T − k̂)−1
∑

2̂ xit be the corresponding

subsample averages over the two estimated regimes. Define λ0 = k0/T . Let y∗it = yit − yi,

ε∗it = εit − εi, x̃a
it = xit1t≤k0 − λ0x0

i,1, x̃b
it = xit1t≥k0+1 − (1 − λ0)x0

i,2, and x̃it = (x̃a′

it , x̃
b′
it)

′.

FE Estimator. To define the first estimator, the subsample fixed effects (FE) estimator, note

that by Assumption 1, E[xituit] = ai 6= 0, but E[(xit−x0
ij)uit] = 0 for all t and for j = 1, 2. Thus

we can instrument xit in (1) with (xit−xi,1) for t = 1, . . . , k̂, and (xit −xi,2) for t = k̂ +1, . . . , T ,

resulting in the usual FE estimators, applied over the two subsamples rather than the entire

sample. The FE population moment conditions, the sample moment conditions7 and the slope

6We do not consider the first-differenced estimators in Qian and Su (2016) because they are not the most efficient
estimators of β0 unless εit are unit root, a case we exclude from our analysis.

7This idea of moment conditions can be generalized to include more lags as instruments, in a way similar to
Arellano and Bond (1991). For example, the difference xit − xis is also an instrument. More instruments lead to
efficiency gains, but on the other hand, too many instruments lead to poor finite sample properties.
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estimators, for j = 1, 2, are:

Population moments: E[(xit − x0
i,j)uit] = 0, for t ∈ I0

j , (6)

Sample moments: gFE,j(β) = N−1
∑N

i=1

∑
ĵ (xit − xi,j)(yit − x′

itβj) = 0, (7)

Slope estimators: β̂FE,j =
(∑N

i=1

∑
ĵ (xit − xi,j)x′

it

)−1∑N
i=1

∑
ĵ (xit − xi,j)yit. (8)

IV Estimator. The instruments (xit − xi,j) are not the only valid instruments for xit; for

example, so are (xit − xi). Our IV estimator is based on these instruments. The corresponding

instrumental variables moment conditions and estimators, for j = 1, 2, are:

Population moments: E[(xit − xi)uit] = 0, for t ∈ I0
j , (9)

Sample moments: gIV,j(β) = N−1
∑N

i=1

∑
ĵ (xit − xi)(yit − x′

itβj) = 0, (10)

Slope estimators: β̂IV,j =
(∑N

i=1

∑
ĵ (xit − xi)x′

it

)−1∑N
i=1

∑
ĵ (xit − xi)yit. (11)

FFE Estimator. Alternatively, we could also demean the data over the full sample, resulting

in waht we call the full-sample fixed effects (FFE) estimator. Rewrite model (1) as

yit − yi =






(xit − λ0x0
i,1)

′β0
1 − (1 − λ0)x0′

i,2β
0
2 + εit − εi, t ≤ k0;

−λ0x0′
i,1β

0
1 + (xit − (1 − λ0)x0

i,2)
′β0

2 + εit − εi, t > k0.

This model can be written more compactly as:

y∗it = x̃a′

it β
0
1 + x̃b′

itβ
0
2 + ε∗it = x̃′

itβ
0 + ε∗it,

where y∗it = yit−yi, yi = T−1
∑T

t=1 yit, ε∗it = εit−εi and εi = T−1
∑T

t=1 εit. When k0 is known, this

model can be estimated via OLS with joint estimation of β0
1 , β0

2 , leading to the FFE estimator:

Population moments: E(x̃it ε∗it) = 0, (12)

Sample moments: gIV (β) = N−1
∑N

i=1

∑
ĵ x̃it(yit − x̃′

itβ) = 0, (13)

Slope estimators: β̂0
FFE =

(∑N
i=1

∑T
t=1 x̃itx̃

′
it

)−1 (∑N
i=1

∑T
t=1 x̃ity

∗
it

)
. (14)

When k0 is unknown, we replace k0 with k̂ in the definition of x̃it. This leads to the full-sample

12



driven fixed effects (FFE) estimator, which we denote by β̂FFE . By Theorem 1, P (k̂ = k0) → 1

as N → ∞, so β̂0
FFE and β̂FFE share the same asymptotic properties (see Theorem 5).

5.3 Asymptotic Distributions of Slope Estimators

We now derive the asymptotic properties of the FE, IV and FFE estimators when N → ∞. We

need the following additional assumptions:

Assumption 3.

(i) limN→∞ N−1
∑N

i=1 E[xitx
′
is] = Ωt,s is finite, for all t, s;

(ii) limN→∞ N−1
∑N

i=1 E [wiw
′
i] = W xε is finite, andwi =

(∑
1(xit−x0

i,1)
′εit,

∑
2(xit−x0

i,2)
′εit

)′
;

(iii) limN→∞ N−1
∑N

i=1 E [viv
′
i] = W xu is finite, and vi =

(∑
1(xit −xi)′uit,

∑
2(xit −xi)′uit

)′
;

(iv) limN→∞ N−1
∑N

i=1 E

[(∑T
t=1 x̃itε

∗
it

)(∑T
t=1 x̃itε

∗
it

)′]

= W̃xε is finite;

(v) k0 ∈ {2, . . . , T − 2}.

These assumptions merely state the existence of moments in the presence of general weak time

series dependence in xit, εit. The following three theorems state the asymptotic distributions of

the estimators we analyze.

Theorem 3. [FE Estimators]

Under Assumptions 1-3, when N → ∞ with T is fixed,

√
N
(
β̂FE − β0

)
d
→ N (0, VFE),

where VFE = Ω−1
1 W xεΩ

−1
1 , with Ω1 a block diagonal matrix, with block diagonal elements k0Q−

k0−1∑k0

t,s=1 Ωt,s and (T − k0)Q − (T − k0)−1
∑T

t,s=k0+1 Ωt,s, respectively.

Theorem 4. [IV Estimators]

Under Assumptions 1-3, when N → ∞ and T is fixed,

√
N(β̂IV − β0)

d
→ N (0, VIV ) ,

where VIV = Ω−1
2 W xuΩ

−1
2 , with Ω2 being a block diagonal matrix, with block diagonal elements

k0Q − T−1
∑k0

t=1

∑T
s=1 Ωt,s and (T − k0)Q − T−1

∑T
t=k0+1

∑T
s=1 Ωt,s, respectively.
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Theorem 5. [FFE Estimators]

Under Assumptions 1-3, when N → ∞ and T is fixed,

√
N(β̂FFE − β0)

d
→ N (0, VFFE) ,

where VFFE = Ω−1
3 W̃xεΩ

−1
3 , and

Ω3 =




k0Q − T−1

∑k0

t,s=1 Ωt,s −T−1
∑T

t=k0+1

∑k0

s=1 Ωt,s

−T−1
∑T

s=k0+1

∑k0

t=1 Ωt,s (T − k0)Q − T−1
∑T

t,s=k0+1 Ωt,s



 .

5.4 Relative Efficiency of Slope Estimators

From the previous section, it is unclear which estimator is asymptotically more efficient. This

might seem surprising, but this result arises because of the interaction of time-dependent errors

and breaks. With no further assumptions on serial dependence, the data-generating process is too

general for any meaningful comparisons. In that case, we suggest stacking the moment conditions

from these three estimators and perform an optimal GMM estimation.

Below, we compare the asymptotic variances of the three estimators under the following

common independence assumptions:

• εit is independent over t;

• εit is independent of xis for any t, s;

• Ωt,s = Q for t = s, and Ωt,s = Ω∗ otherwise.

Let W̃t,s = E[xitx
′
isc

2
i ]. Under these conditions, we show in the appendix that

VFE = σ2
ε








C1 0

0 C2



−




(1 − λ0)(Q − Ω∗) 0

0 λ0(Q − Ω∗)









−1

VIV = σ2
ε




C1 0

0 C2





−1

+




C−1

1 BC−1
1 −C−1

1 BC−1
2

−C−1
2 BC−1

1 C−1
2 BC−1

2



 ,

VFFE = σ2
ε








C1 0

0 C2



+




D −D

−D D









−1

,
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where

B = (1 − λ0)2
∑k0

t,s=1 W̃t,s − 2λ0(1 − λ0)
∑k0

t=1

∑T
s=k0+1 W̃t,s + (λ0)2

∑T
t,s=k0+1 W̃t,s,

C1 = λ0(T − 1)(Q − Ω∗), C2 = (1 − λ0)(T − 1)(Q − Ω∗), D = λ0(T − k0)Ω∗.

This is the setting of the simulation section 6, but it seems that the precision of estimators still

cannot be compared theoretically without further assumptions8. In the special case of Ω∗ = 0

(regressors are uncorrelated over time), FFE is more efficient than FE because D = 0. This result

shows that there are more efficient estimators than the usual FE estimators in the presence of a

break. In other words, it is better to demean over the full-sample rather than over subsamples,

because in doing so, additional information is used about the relative size of the two subsamples.

If Ω∗ = 0 and xit is independent of ci (random effects), then VIV = VFFE < VFE
9, so both FFE

and IV are asymptotically more efficient than FE. This shows that both FFE and IV perform

some type of quasi-demeaning either on the instruments or on the level equation.

6 Simulation Study

This section studies the finite sample properties of our estimators.10 Specifically, we study the

finite sample performance of k̂, β̂OLS , β̂FE , β̂IV and β̂FFE . We generate εit iid N (0, 0.52) over i

and t. ci is generated independent of εit, and is iid N (0, 0.52). We generate xit as xit =
√

2ci +zit,

where zit ∼ iidN (0, 0.5), independent over i and t. The slope parameters (β0
1, β0

2) = (−0.1, 0.1).

We consider two cases for the true break point: k0 = [T/3] and k0 = 2, where [∙] is the least

integer function. In all cases the results are reported for 10,000 replications.

In Table 1 and 2, we report the MC averages and standard errors (in parentheses) for the

break point estimators. In Table 1, when k0 = [T/3], the numbers of time periods before and

after the break are more balanced, and the estimates for the break point are very precise. In

Table 2, when k0 = 2, the number of time periods in the first sub-sample is small. When N = 50,

the sample size is not big enough, and k̂ has a big positive bias, but this decreases as N increases

to 100 or 200, as we expect.

8If Ω∗ is not positive definite, then VFFE cannot be compared with VFE .
9For two positive definite matrices A and B, A > B means A − B is positive definite.

10The current simulation study assumes that the number of breaks is known and equal to one. Further simulations
with multiple breaks are in progress.
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Figure 1: Histogram of k̂ when k0 = [T/3]

T = 20, k0 = 6

T = 50, k0 = 16

T = 30, k0 = 10

T = 100, k0 = 33

T = 200, k0 = 66
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Figure 2: Histogram of k̂ when k0 = 2

T = 20

T = 50

T = 30

T = 100

T = 200
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Table 1: (MC Average) break point estimates, when k0 = [T/3]
N = 50 N = 100 N = 200

T = 20 k0 = 6 6.041 6.010 6.001
T = 30 k0 = 10 10.000 9.995 10.000
T = 50 k0 = 16 15.983 15.992 15.998
T = 100 k0 = 33 32.974 32.980 32.996
T = 200 k0 = 66 65.953 65.986 65.997

Table 2: (MC Average) break point estimates, when k0 = 2
N = 50 N = 100 N = 200

T = 20 k0 = 2 2.921 2.172 2.012
T = 30 k0 = 2 3.504 2.201 2.021
T = 50 k0 = 2 4.407 2.254 2.017
T = 100 k0 = 2 7.037 2.521 2.020
T = 200 k0 = 2 13.519 3.026 2.018

In Figure 1 and 2, we plot histograms of k̂ around k0. The histograms agree with the result

in Table 1 that our break point estimator performs well, both for a small T and a large T .

In Table 3 and 4 we report the bias and standard error of slope estimates based on the four

methods: OLS, FE, IV and FFE. The standard errors are found using the formula in Section 5.

We do not report the standard errors of the OLS estimators, because their standard errors cannot

be computed based on Theorem 2. We find that the OLS estimators have a relatively large bias;

this is not surprising under endogeneity of the regressors in OLS. It can be seen from Table 3 that

FE, IV and FFE all work well for k0 = [T/3]. In Table 4, when N = 50, there is a positive bias

for FE, IV and FFE in the first regime. In this case, k̂ has a large positive bias, which means the

first estimated sub-sample contains many observations from the second true regime, leading to

the bias. We also find that the bias of the IV estimator is smaller than that of the other two, but

its standard error is larger. Also, we observe that the FFE estimator has indeed smaller standard

errors than the FE estimator when N = 50 or 100; with N = 200, these differences vanish.
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Table 3: Bias and standard errors of the slope parameter estimates, k0 = [T/3]

Method
N = 50 N = 100 N = 200

β̂1 β̂2 β̂1 β̂2 β̂1 β̂2

T = 20 OLS 0.348 0.351 0.352 0.352 0.353 0.353

FE
-0.001 0.001 -0.000 0.000 -0.000 0.000
(0.045) (0.028) (0.032) (0.020) (0.022) (0.014)

IV
-0.003 0.000 -0.000 0.000 -0.001 0.000
(0.056) (0.032) (0.039) (0.022) (0.028) (0.016)

FFE
-0.001 0.001 -0.000 0.000 -0.000 0.000
(0.042) (0.028) (0.030) (0.019) (0.021) (0.014)

T = 30 OLS 0.350 0.351 0.352 0.352 0.352 0.353

FE
-0.000 0.000 -0.001 0.000 -0.000 0.000
(0.034) (0.023) (0.024) (0.016) (0.017) (0.011)

IV
-0.001 0.000 -0.001 0.000 -0.001 0.000
(0.042) (0.026) (0.029) (0.019) (0.021) (0.013)

FFE
-0.000 0.000 -0.000 0.000 -0.000 0.000
(0.032) (0.023) (0.023) (0.016) (0.016) (0.011)

T = 50 OLS 0.350 0.351 0.352 0.352 0.353 0.353

FE
-0.001 0.000 -0.000 0.000 -0.000 0.000
(0.026) (0.017) (0.018) (0.012) (0.013) (0.009)

IV
-0.001 0.000 -0.000 0.000 -0.000 0.000
(0.033) (0.020) (0.023) (0.014) (0.016) (0.010)

FFE
-0.000 0.000 -0.000 0.000 -0.000 0.000
(0.025) (0.017) (0.018) (0.012) (0.013) (0.009)

T = 100 OLS 0.350 0.350 0.352 0.352 0.353 0.353

FE
-0.000 0.000 -0.000 0.000 -0.000 0.000
(0.018) (0.012) (0.013) (0.009) (0.009) (0.006)

IV
-0.001 0.000 -0.000 0.000 -0.000 0.000
(0.022) (0.014) (0.016) (0.010) (0.011) (0.007)

FFE
-0.000 0.000 -0.000 0.000 -0.000 0.000
(0.018) (0.012) (0.012) (0.009) (0.009) (0.006)

T = 200 OLS 0.350 0.350 0.351 0.351 0.352 0.352

FE
-0.000 0.000 -0.000 0.000 -0.000 0.000
(0.012) (0.009) (0.009) (0.006) (0.006) (0.004)

IV
-0.000 0.000 -0.000 0.000 -0.000 0.000
(0.016) (0.010) (0.011) (0.007) (0.008) (0.005)

FFE
-0.000 0.000 -0.000 0.000 -0.000 0.000
(0.012) (0.009) (0.009) (0.006) (0.006) (0.004)

True parameter values: (β0
1 , β0

2) = (−0.1, 0.1).
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Table 4: Bias and standard errors of the slope parameter estimates, k0 = 2

Method
N = 50 N = 100 N = 200

β̂1 β̂2 β̂1 β̂2 β̂1 β̂2

T = 20 OLS 0.354 0.354 0.353 0.353 0.353 0.353

FE
0.020 0.001 0.006 0.001 0.001 0.000

(0.088) (0.026) (0.068) (0.017) (0.050) (0.012)

IV
0.003 0.002 -0.001 0.001 -0.002 0.000

(0.100) (0.031) (0.072) (0.018) (0.051) (0.013)

FFE
0.007 0.003 0.002 0.001 0.000 0.000

(0.071) (0.027) (0.051) (0.017) (0.036) (0.012)
T = 30 OLS 0.357 0.354 0.353 0.352 0.353 0.353

FE
0.020 0.001 0.005 0.000 0.000 0.000

(0.087) (0.021) (0.068) (0.014) (0.050) (0.010)

IV
0.004 0.002 -0.001 0.000 -0.001 0.000

(0.099) (0.027) (0.071) (0.014) (0.050) (0.010)

FFE
0.009 0.002 0.002 0.000 0.000 0.000

(0.070) (0.023) (0.051) (0.014) (0.036) (0.010)
T = 50 OLS 0.357 0.352 0.353 0.352 0.354 0.353

FE
0.023 0.001 0.007 0.000 0.001 0.000

(0.087) (0.017) (0.068) (0.010) (0.050) (0.007)

IV
0.006 0.001 -0.001 0.000 -0.002 0.000

(0.098) (0.021) (0.071) (0.011) (0.050) (0.007)

FFE
0.010 0.001 0.002 0.000 0.001 0.000

(0.069) (0.018) (0.050) (0.011) (0.036) (0.007)
T = 100 OLS 0.358 0.351 0.354 0.352 0.354 0.353

FE
0.025 0.000 0.008 0.000 0.001 0.000

(0.086) (0.013) (0.068) (0.007) (0.050) (0.005)

IV
0.006 0.001 -0.001 0.000 -0.001 0.000

(0.097) (0.017) (0.071) (0.008) (0.050) (0.005)

FFE
0.012 0.001 0.003 0.000 0.001 0.000

(0.068) (0.014) (0.050) (0.007) (0.035) (0.005)
T = 200 OLS 0.362 0.351 0.353 0.351 0.353 0.352

FE
0.026 0.000 0.006 0.000 0.001 0.000

(0.086) (0.011) (0.068) (0.005) (0.050) (0.004)

IV
0.011 0.000 -0.002 0.000 -0.001 0.000

(0.095) (0.015) (0.070) (0.006) (0.050) (0.004)

FFE
0.015 0.000 0.002 0.000 0.000 0.000

(0.067) (0.012) (0.050) (0.005) (0.035) (0.004)

True parameter values: (β0
1 , β0

2) = (−0.1, 0.1).
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7 Conclusion

In this paper, we propose OLS estimators of multiple break-points for fixed effects panel data

regression models. We show that these are consistent for the true break-points as N → ∞, subject

to a time homogeneity condition. We propose estimating the break-points via an information

criterion. Furthermore, we propose three fixed effects estimators, based on one estimated break

point. All three estimators are shown to be consistent and asymptotically normal with the

same
√

N convergence rate. Their finite sample properties are investigated by simulation, and it

appears that for iid data, the FFE estimators perform best.
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Appendix A

All the proofs are done below for one break point; the extension to multiple break-points is

straightforward and ommitted for simplicity. Therefore, we let k0 def
= T 0

1 , k
def
= T1, and we substitute

dependence on partition Tm0+1 with dependence on k.

Proof of Lemma 1. For all four results (i)-(iv), the proof uses the WLLN, which is in Appendix

B. The independence requirement is satisfied for all four summands, due to Assumption 1(i).

Further, by Assumption 1, the difference between the summands and their limits have zero

mean. Thus, we only need to check that for some ξ > 0, the 1 + ξ moments of the summands

exist.

Firstly, since xitx
′
it is a p× p matrix, we apply the WLLN to each column of xitx

′
it. Let xit,q

be the q-th element in xit. The q-th column in xitx
′
it is thus xitxit,q, with E|xitxit,q|1+ξ/2 =

(
‖xitxit,q‖1+ξ/2

)1+ξ/2 ≤ (‖xit‖2+ξ‖xit,q‖2+ξ)
1+ξ/2 by Cauchy-Schwarz inequality. Take the supre-

mum over i ∈ N on both sides and we have supi∈NE|xitxit,q|1+ξ/2 < ∞ by Assumption 1(ii). Thus

N−1
∑N

i=1 xitxit,q converges in probability to the q-th column of Q, and N−1
∑N

i=1 xitx
′
it

p
→ Q.

For all the remaining three results it is easy to follow the same procedure in the previous

paragraph and show that the required moment conditions in the WLLN are satisfied. Thus all

requirements in the WLLN are satisfied and we have N−1
∑N

i=1 xitci
p
→ a, N−1

∑N
i=1 xitεit

p
→ 0

and N−1
∑N

i=1 u2
it

p
→ σ2

ε + σ2
c .
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Proof of Theorem 1. Part (i). Assume first that k ≤ k0. Start by noting that:

(NT )SNT (k) = (y − X̃β̂OLS(k))′ (y − X̃β̂OLS(k))

= (X̃0β0 + u − X̃β̂OLS(k))′ (X̃0β0 + u − X̃β̂OLS(k))

= (X̃0β0 + u)′ (I − X̃(X̃ ′X̃)−1X̃)(X̃0β0 + u)

SNT (k) = (NT )−1u′u + β0′
(
(NT )−1X̃0′X̃0 − (NT )−1X̃0′X̃((NT )−1X̃ ′X̃)−1(NT )−1X̃ ′X̃0

)
β0

+ 2β0′
(
(NT )−1X̃0′u − (NT )−1X̃0′X̃((NT )−1X̃ ′X̃)−1(NT )−1X̃ ′u

)

− (NT )−1u′X̃((NT )−1X̃ ′X̃)−1(NT )−1X̃ ′u. (15)

Note that since T is fixed, division by T through the proof of this theorem is not needed, but

it doesn’t change the results, and makes the proof clearer. Note in the above equation that the

proof of the convergence of SNT (k) only involves four different terms: (NT )−1u′u, (NT )−1X̃ ′X̃,

(NT )−1X̃0′X̃, and (NT )−1X̃ ′u. We now show that the convergence of the four terms follows

from Lemma 1. Let Dk =




k/T 0

0 (T − k)/T



, DΔ =




k/T 0

(k0 − k)/T (T − k0)/T



 and `q be a

vector of ones with length q.

Firstly, in Lemma 1(iv), it is shown that (NT )−1u′u
p
→ σ2

ε + σ2
c . Next,

(NT )−1X̃ ′X̃ =




T−1

∑k
t=1

(
N−1

∑N
i=1 xitx

′
it

)
0

0 T−1
∑T

t=k+1

(
N−1

∑N
i=1 xitx

′
it

)



 ,

(NT )−1X̃ ′X̃0 =




T−1

∑k
t=1

(
N−1

∑N
i=1 xitx

′
it

)
0

T−1
∑k0

t=k+1

(
N−1

∑N
i=1 xitx

′
it

)
T−1

∑T
t=k0+1

(
N−1

∑N
i=1 xitx

′
it

)



 .

By Lemma 1(i), the above two terms converge in probability to Dk ⊗Q and DΔ⊗Q respectively

as N → ∞, where ⊗ denotes the Kronecker product of two matrices. Lastly,

(NT )−1X̃ ′u =




T−1

∑k
t=1

(
N−1

∑N
i=1 xit(εit + ci)

)

T−1
∑T

t=k+1

(
N−1

∑N
i=1 xit(εit + ci)

)



 .

By Lemma 1(ii) and (iii), for `2 = (1 1)′ the above term converges in probability to Dk ∙ (`2⊗a).
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Collecting the results in conjunction with equation (15), we have for k ≤ k0,

SNT (k)
p
→ σ2

ε + σ2
c + β0′

(
Dk0 ⊗ Q − (DΔ ⊗ Q)′(Dk ⊗ Q)−1(DΔ ⊗ Q)

)

+ 2β0′
(
Dk ∙ (`2 ⊗ a) − (DΔ ⊗ Q)′(Dk ⊗ Q)−1Dk ∙ (`2 ⊗ a)

)

− (Dk ∙ (`2 ⊗ a))′(Dk ⊗ Q)−1Dk ∙ (`2 ⊗ a).

After simplification, it can be shown that the above term is equal to (k0−k)(T−k0)
(T−k)T δ0′Q δ0 + (σ2

ε +

σ2
c − a′Q−1a).

A similar procedure can be carried out for k ≥ k0, in which case SNT (k)
p
→ (k−k0)k0

kT δ0′Q δ0 +

(σ2
ε + σ2

c − a′Q−1a). This completes the proof for SNT (k)
p
→ S∗

NT (k) uniformly in k.

Part (ii), (iii). To show that P (k̂ = k0) → 1, note that δ0′Qδ0 is strictly positive by

Assumption 1(ii), so S∗
NT (k) attains its unique minimum at k0. Moreover, this function is defined

over a discrete domain k ∈ {1, 2, . . . , T − 1} for a fixed T . This means the probability of having

a tie when minimizing (3) tends to zero. The consistency of k̂ follows using the same argument

as in Theorem 5.7 in van der Vaart (2000).

Proof of Theorem 2.

Let β̂0
OLS := β̂OLS(k0) be the OLS estimator for β0 using the true break point k0. By Theorem

1 P (k̂ = k0) → 1 as N → ∞. Since k̂ = k0 implies β̂OLS = β̂0
OLS , P (β̂OLS = β̂0

OLS) → 1. Thus
√

N(β̂OLS − β0 − ΔN,β) and
√

N(β̂0
OLS − β0 − ΔN,β) share the same limiting distribution, and

to prove part (i) of the theorem it is sufficient to derive the limiting distribution of the latter.

By reexpressing ΔN,β, we can show

√
N(β̂0

OLS − β0 − ΔN,β) =
(
(NT )−1X̃0′X̃0

)−1 √
N
(
(NT )−1X̃0′u − Dk0 ∙ (`2 ⊗ a)

)
,

where Dk0 =




k0/T 0

0 (T − k0)/T



. It follows from the proof of Theorem 1 that the term

(NT )−1X̃0′X̃0 above converges in probability to Dk0 ⊗ Q. Next,

√
N
(
(NT )−1X̃0′u − Dk0 ∙ (`2 ⊗ a)

)
= 1√

N

∑N
i=1




1
T

∑k0

t=1(xituit − a)

1
T

∑T
t=k0+1(xituit − a)



 .
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By Assumption 1, the summands




1
T

∑k0

t=1(xituit − a)

1
T

∑T
t=k0+1(xituit − a)



 are independent over i with mean

zero. The moment condition for applying the CLT is also satisfied, since sup i∈N ‖
1
T

∑k0

t=1(xituit−

a)‖2+ξ ≤ supi∈N
1
T

∑k0

t=1(‖xituit‖2+ξ + |a|) ≤ supi∈N
1
T

∑k0

t=1(‖xit‖4+2ξ‖uit‖4+2ξ + |a|) < ∞ by

the Cauchy-Schwarz inequality and Assumption 2. A similar set of inequalities can be applied to

show supi∈N ‖
1
T

∑T
t=k0+1(xituit − a)‖2+ξ < ∞. The asymptotic variance is:

Avar



 1√
N

∑N
i=1




1
T

∑k0

t=1(xituit − a)

1
T

∑T
t=k0+1(xituit − a)









= limN→∞
1
N

∑N
i=1 E








1
T

∑k0

t=1(xituit − a)

1
T

∑T
t=k0+1(xituit − a)








1
T

∑k0

t=1(xituit − a)

1
T

∑T
t=k0+1(xituit − a)





′



= limN→∞
1
N

∑N
i=1 E








T−2

∑k0

t,s=1 xitx
′
isuituis T−2

∑k0

t=1

∑T
s=k0+1 xitx

′
isuituis

∑T
t,s=k0+1 xitx

′
isuituis









−




k02

/T 2aa′ k0(T − k0)/T 2aa′

k0(T − k0)/T 2aa′ (T − k0)2/T 2aa′





=




T−2

∑k0

t,s=1(Wt,s − aa′) T−2
∑k0

t=1

∑T
s=k0+1(Wt,s − aa′)

T−2
∑T

t=k0+1

∑k0

s=1(Wt,s − aa′) T−2
∑T

t,s=k0+1(Wt,s − aa′)



 = Wxu,

where we use Assumption 1(iii) and (iv) to have 1
N

∑N
i=1 E[xituit]

p
→ a in the first equality, and

we use Assumption 2 in the second equality. Thus all the three conditions in the central limit

theorem are met, and we have

√
N
(
(NT )−1X̃0′u − Dk0 ∙ (`2 ⊗ a)

)
d
→ N (0, Wxu).

Together with the result that (NT )−1X̃0′X̃0 p
→ Dk0 ⊗ Q, we obtain

√
N(β̂0

OLS − β0 − ΔN,β)
d
→ N (0,Ωβ),

where Ωβ = (Dk0 ⊗ Q)−1 ∙ Wxu ∙
(
D′

k0 ⊗ Q′
)−1. Together with the result P (β̂OLS = β̂0) → 1,

we have
√

N(β̂OLS − β0 − ΔN,β)
d
→ N (0,Ωβ). (16)
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The second part of the theorem follows by premultiplying both sides of (16) by (Ip , −Ip):

√
N(δ̂OLS − δ0 − ΔN,δ) = (Ip , −Ip)

√
N(β̂OLS − β0 − ΔN,β)

d
→ (Ip , −Ip)N (0,Ωβ) = N (0,Ωδ),

where Ωδ = (Ip , −Ip) Ωβ (Ip , −Ip)′.

The following lemma is needed for proving Theorem 3 and 5. Recall the definitions x0
i,1 =

k0−1∑
1 xit, x0

i,2 = (T −k0)−1
∑

2 xit, x̃a
it = xit1t≤k0 −λ0x0

i,1, x̃b
it = xit1t≥k0+1 − (1−λ0)x0

i,2 and

x̃it = (x̃a′

it x̃b′
it)

′.

Lemma 2. Under Assumptions 1 and 3, we have

(i) N−1
∑N

i=1

∑
1(xit − x0

i,1)x
′
it

p
→ k0Q − (k0)−1

∑k0

t,s=1 Ωt,s,

N−1
∑N

i=1

∑
2(xit − x0

i,2)xit
p
→ (T − k0)Q − (T − k0)−1

∑T
t,s=k0+1 Ωt,s;

(ii) N−1/2
∑N

i=1 wi
d
→ N (0, W xε), for wi =

(∑
1(xit − x0

i,1)
′εit ,

∑
2(xit − x0

i,2)
′εit

)′
;

(iii) N−1
∑N

i=1

∑
1(xit − xi)x′

it
p
→ k0Q − T−1

∑k0

t=1

∑T
s=1 Ωt,s,

N−1
∑N

i=1

∑
2(xit − xi)x′

it
p
→ (T − k0)Q − T−1

∑T
t=k0+1

∑T
s=1 Ωt,s;

(iv) N−1/2
∑N

i=1 vi
d
→ N (0, W xu), for vi =

(∑
1(xit − xi)′uit ,

∑
2(xit − xi)′uit

)′
;

(v) N−1
∑N

i=1

∑T
t=1 x̃a

itx̃
a
it

p
→ k0Q − T−1

∑k0

t,s=1 Ωt,s,

N−1
∑N

i=1

∑T
t=1 x̃b

itx̃
a′

it
p
→ −T−1

∑T
t=k0+1

∑k0

s=1 Ωt,s,

N−1
∑N

i=1

∑T
t=1 x̃b

itx̃
b
it

p
→ (T − k0)Q − T−1

∑T
t,s=k0+1 Ωt,s;

(vi) N−1/2
∑N

i=1

∑T
t=1 x̃itε

∗
it

d
→ N (0, W̃xε).

Proof. For (i), we first note that

1
N

∑N
i=1

∑
1(xit − x0

i,1)x
′
it = 1

N

∑N
i=1

∑
1 xitx

′
it −

k0

N

∑N
i=1 x0

i,1x
0′
i,1.

By Lemma 1(i), 1
N

∑N
i=1 xitx

′
it

p
→ Q for every t. By Assumption 1(i) and (ii), x0

i,1x
0′
i,1 is inde-

pendent over i, and the moment condition in the WLLN (in Appendix B) can be shown to be

satisfied. Applying the WLLN, together with Assumption 3(i), we get

1
N

N∑

i=1

x0
i,1x

0′

i,1 =
1
N

N∑

i=1

1
(k0)2

k0∑

t,s=1

xitx
′
is

p
→

1
(k0)2

k0∑

t,s=1

Ωt,s. (17)

So 1
N

∑N
i=1

∑
1(xit − x0

i,1)x
′
it

p
→ k0Q − k0−1∑k0

t,s=1 Ωt,s. The second part of (i) concerning the
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corresponding result for the second regime can be derived similarly.

We now derive (ii). By Assumption 1(i), (iii) and (iv),
∑

1(xit − x0
i,1)εit is a mean-zero

process, independent over i. Also, by the triangle and Hölder’s inequalities and Assumption 2,

‖
∑

1(xit − x0
i,1)εit‖2+ξ/2 ≤

∑
1 ‖xit − x0

i,1‖4+ξ ‖εit‖4+ξ ≤ 2k0 supi,t ‖xit‖4+ξ supi,t ‖εit‖4+ξ < ∞.

A similar set of inequalities can be derived for the (2+ ξ/2)th moment of
∑

2(xit−x0
i,2)εit. So, the

(2 + ξ/2)th moment of wi exists, for some ξ > 0. By Assumption 3(ii), the asymptotic variance

Avar
(
N−1/2

∑N
i=1 wi

)
= W xε also exists. Applying the CLT for an independent sequence, we

obtain that

N−1/2
∑N

i=1 wi = N−1/2
∑N

i=1




∑

1(xit − x0
i,1)εit

∑
2(xit − x0

i,2)εit



 d
→ N (0, W xε). (18)

For (iii), it can be shown, using Lemma 1(i) and 2 that

N−1
∑N

i=1

∑
1(xit − xi)x′

it = N−1
∑N

i=1

∑
1 xitx

′
it −

∑k0

t=1 T−1
∑T

s=1

(
N−1

∑N
i=1 xisx

′
it

)

p
→ k0Q − T−1

∑k0

t=1

∑T
s=1 Ωt,s.

For (iv), by Assumption 1(i), (iii) and (iv),
∑

1(xit−xi)uit =
∑

1(xit−xi)εit +
∑

1(xit−xi)ci

is a mean-zero process, independent over i. Again by the triangle and Hölder’s inequalities and

Assumption 2, the (2+ ξ/2)th moment of
∑

1(xit−xi)uit and
∑

2(xit−xi)uit can be shown to be

bounded: ‖
∑

j(xit−xi)uit‖2+ξ/2 ≤
∑

j ‖xit−xi‖4+ξ ‖uit‖4+ξ ≤ 2k0 supi,t ‖xit‖4+ξ supi,t ‖uit‖4+ξ <

∞. So, the (2 + ξ/2)th moment of vi exists, for some ξ > 0. By Assumption 3(ii), the asymp-

totic variance Avar
(
N−1/2

∑N
i=1 vi

)
= W xu also exists. Applying the CLT for an independent

sequence, we obtain that

N−1/2
∑N

i=1 vi = N−1/2
∑N

i=1




∑

1(xit − xi)uit

∑
2(xit − xi)uit



 d
→ N (0, W xu). (19)

For (v), it can be derived that

1
N

∑N
i=1(

∑T
t=1 x̃a

itx̃
a′

it ) = 1
N

∑N
i=1(

∑
1 xitx

′
it − k0λ0x0

i,1x
0′
i,1).

Using Lemma 1(i) and the result in (17), we can show that the above converges in probability to

k0Q − T−1
∑k0

t=1

∑k0

s=1 Ωt,s. The two other results in (iii) can be shown accordingly.
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For (vi), the summand
∑T

t=1 x̃itε
∗
it has mean zero by Assumption 1(iii), and is independent

over i by Assumption 1(i). Its (2+ξ/2)th moment can be shown to be bounded under Assumption

2 using the triangle and Hölder’s inequalities. Further, its asymptotic variance exists and is equal

to W̃xε by Assumption 3(iv). Thus we can apply the CLT for an independent sequence to obtain

N−1/2
∑N

i=1

∑T
t=1 x̃itε

∗
it

d
→ N (0, W̃xε).

Proof of Theorem 3.

Define β̂0
FE to be the FE estimator based on the true break point. Using the same argument

as in the proof of Theorem 2, P (k̂ = k0) → 1 implies that P (β̂0
FE = β̂FE) → 1; so it is

sufficient to show
√

N(β̂0
FE − β0) has the same asymptotic distribution described in Theorem 3.

As in Section 5.2, we use the notation x0
i,1 and x0

i,2 to denote the subsample averages over the

first and the second regime. The corresponding fixed effects estimator for the first subsample

is β̂0
FE,1 =

[∑N
i=1

∑
1(xit − x0

i,1)x
′
it

]−1∑N
i=1

∑
1(xit − x0

i,1)yit, and for the second subsample

β̂0
FE,2 =

[∑N
i=1

∑
2(xit − x0

i,2)x
′
it

]−1∑N
i=1

∑
2(xit − x0

i,2)yit. Since
∑k0

t=1(xit − x0
i,1)ci = 0, we

have, in matrix notation,

√
N
(
β̂0

FE − β0
)

=



1
N

∑N
i=1

∑
1(xit − x0

i,1)x
′
it 0

0 1
N

∑N
i=1

∑
2(xit − x0

i,2)x
′
it





−1


1√
N

∑N
i=1

∑
1(xit − x0

i,1)εit

1√
N

∑N
i=1

∑
2(xit − x0

i,2)εit



 .

Note that here we need Assumption 3(v): if k0 = 1 then xi1 = x0
i,1, and so β0

1 is not identified

using FE. Similarly, if k0 = T − 1, then β0
2 is not identified. In Lemma 2(i) and (ii), we derived

the limit of all terms in the above equation. Putting them together, we get

√
N
(
β̂0

FE − β0
)

d
→ N (0,Ω−1

1 W xεΩ
−1
1 ).

So
√

N
(
β̂FE − β0

)
d
→ N (0,Ω−1

1 W xεΩ
−1
1 ).

Proof of Theorem 4.

Same as in the proof of Theorem 3, we can take k0 as known to obtain the asymptotic distribution

of the slope estimator, denoted β̂0
IV , and argue that the asymptotic distribution of β̂0

IV and β̂IV
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is the same. For β̂0
IV , we have

√
N
(
β̂0

IV − β0
)

=



1
N

∑N
i=1

∑
1(xit − xi)x′

it 0

0 1
N

∑N
i=1

∑
2(xit − xi)x′

it





−1


1√
N

∑N
i=1

∑
1(xit − xi)uit

1√
N

∑N
i=1

∑
2(xit − xi)uit



 .

In Lemma 2(iii) and (iv), we derived the limit of all terms in the above equation. So we have

√
N
(
β̂0

IV − β0
)

d
→ N (0,Ω−1

2 W xuΩ
−1
2 ).

When k0 is unknown,
√

N
(
β̂IV − β0

)
d
→ N (0,Ω−1

2 W xuΩ
−1
2 ).

Proof of Theorem 5.

We have

√
N(β̂0

FFE − β0) =
(
N−1

∑N
i=1

∑T
t=1 x̃itx̃

′
it

)−1 (
N−1/2

∑N
i=1

∑T
t=1 x̃itε

∗
it

)
.

By definition

N−1
∑N

i=1

∑T
t=1 x̃itx̃

′
it =




N−1

∑N
i=1

∑T
t=1 x̃a

itx̃
a′

it N−1
∑N

i=1

∑T
t=1 x̃a

itx̃
b′
it

N−1
∑N

i=1

∑T
t=1 x̃b

itx̃
a′

it N−1
∑N

i=1

∑T
t=1 x̃b

itx̃
b′
it



 .

which converges, as is shown in Lemma 2(v), to




k0Q − T−1

∑k0

t,s=1 Ωt,s −T−1
∑T

t=k0+1

∑k0

s=1 Ωt,s

−T−1
∑T

s=k0+1

∑k0

t=1 Ωt,s (T − k0)Q − T−1
∑T

t,s=k0+1 Ωt,s



 =: Ω3.

Further, by Lemma 2(vi),

N−1/2
∑N

i=1

∑T
t=1 x̃itε

∗
it

d
→ N (0, W̃xε).

Thus
√

N(β̂0
FFE−β0)

d
→ N (0,Ω−1

3 W̃xεΩ
−1
3 ), and consequently

√
N(β̂FFE−β0)

d
→ N (0,Ω−1

3 W̃xεΩ
−1
3 )

when k0 is unknown.

Calculation of the variance of the FE, IV and FFE estimators.

All the following results are derived under the assumption that εit’s are independent over i and
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t. We first compute VFE = Ω−1
1 W xεΩ

−1
1 . To find W xε := N−1

∑N
i=1 E[wiw

′
i], note that

wiw
′
i =




∑k0

t,s=1(xit − x0
i,1)(xis − x0

i,1)
′εitεis

∑k0

t=1

∑T
s=k0+1(xit − x0

i,1)(xis − x0
i,2)

′εitεis

∑T
t=k0+1

∑k0

s=1(xit − x0
i,2)(xis − x0

i,1)
′εitεis

∑T
t,s=k0+1(xit − x0

i,2)(xis − x0
i,2)

′εitεis



 .

(20)

We then take the expectation of all the four blocks. The upper-left block in the matrix has

expectation equal to

∑k0

t,s=1 E[(xit − x0
i,1)(xis − x0

i,1)
′εitεis]

=
∑k0

t,s=1 E[(xit − x0
i,1)(xis − x0

i,1)
′]E[εitεis]

=
∑k0

t=1 E[(xit − x0
i,1)(xit − x0

i,1)
′]E[ε2it]

=
∑k0

t=1

(
Q − (k0)−1

∑k0

s=1 Ωt,s − (k0)−1
∑k0

s=1 Ωs,t + (k0)−2
∑k0

s=1

∑k0

t=1 Ωs,t

)
σ2

ε

=
(
k0Q − (k0)−1

∑k0

t,s=1 Ωt,s − (k0)−1
∑k0

t,s=1 Ωs,t + (k0)−1
∑k0

s=1

∑k0

t=1 Ωs,t

)
σ2

ε

=
(
k0Q − (k0)−1

∑k0

t,s=1 Ωt,s

)
σ2

ε .

Following the same steps, we can find the expectations of all three other blocks in (20):

∑T
t=k0+1

∑k0

s=1 E[(xit − x0
i,2)(xis − x0

i,1)
′εitεis] = 0

∑k0

t=1

∑T
s=k0+1 E[(xit − x0

i,1)(xis − x0
i,2)

′εitεis] = 0
∑T

t,s=k0+1 E[(xit − x0
i,2)(xis − x0

i,2)
′εitεis]

=
(
(T − k0)Q − (T − k0)−1

∑T
t,s=k0+1 Ωt,s

)
σ2

ε .

Thus, W xε = σ2
ε




k0Q − (k0)−1

∑k0

t,s=1 Ωt,s 0

0 (T − k0)Q − (T − k0)−1
∑T

t,s=k0+1 Ωt,s



 = σ2
ε Ω1.

So VFE = σ2
ε Ω

−1
1 . Under the simplification Ωt,s = Q for t = s and Ωt,s = Ω∗ for t 6= s, we have

VFE = σ2
ε




(k0 − 1)(Q − Ω∗) 0

0 (T − k0 − 1)(Q − Ω∗)





−1

= σ2
ε








C1 0

0 C2



−




(1 − k0/T )(Q − Ω∗) 0

0 k0/T (Q − Ω∗)









−1
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for C1 = k0(1 − T−1)(Q − Ω∗) and C2 = (T − k0)(1 − T−1)(Q − Ω∗).

Next we compute VIV = Ω−1
2 W xuΩ

−2
2 . To find W xu := N−1

∑N
i=1 E[viv

′
i], we derive

viv
′
i =




∑k0

t,s=1(xit − xi)(xis − xi)′uituis
∑k0

t=1

∑T
s=k0+1(xit − xi)(xis − xi)′uituis

∑T
t=k0+1

∑k0

s=1(xit − xi)(xis − xi)′uituis
∑T

t,s=k0+1(xit − xi)(xis − xi)′uituis



 .

The upper-left block in the matrix has expectation equal to
∑k0

t,s=1 E[(xit −xi)(xis −xi)′(εitεis +

ciεis + εitci + c2
i )]. First,

∑k0

t,s=1 E[(xit − xi)(xis − xi)′εitεis]

=
∑k0

t,s=1 E[(xit − xi)(xis − xi)′]E[εitεis]

=
∑k0

t=1 E[(xit − xi)(xit − xi)′]E[ε2
it]

=
(
k0Q − T−1

∑k0

t=1

∑T
s=1 Ωt,s − T−1

∑k0

t=1

∑T
s=1 Ωs,t + T−2k0

∑T
t=1

∑T
s=1 Ωt,s

)
σ2

ε =: A1σ
2
ε .

Next, by the independence of εit with ci and xis,

E[(xit − xi)(xis − xi)′ciεis] = E[(xit − xi)(xis − xi)′ci]E[εis] = 0.

So both
∑k0

t,s=1 E[(xit−xi)(xis−xi)′ciεis] and
∑k0

t,s=1 E[(xit−xi)(xis−xi)′εitci] are zero. Lastly,

E[(xit − xi)(xis − xi)′c2
i ] = E[xitx

′
isc

2
i ] − E[xitx

′
ic

2
i ] − E[xix

′
isc

2
i ] + E[xix

′
ic

2
i ].

Summed up over t, s = 1, . . . , k0, we get

∑k0

t,s=1 E[(xit − xi)(xis − xi)′c2
i ] =

∑k0

t,s=1 W̃t,s −
∑k0

t=1 k0T−1
∑T

s=1 E[xitx
′
isc

2
i ]

− k0
∑k0

s=1 T−1
∑T

t=1 E[xitx
′
isc

2
i ] + (k0)2T−2

∑T
t=1

∑T
s=1 E[xitxisc

2
i ]

= (1 − k0/T )2
∑k0

t,s=1 W̃t,s − 2k0/T (1 − k0/T )
∑k0

t=1

∑T
s=k0+1 W̃t,s + (k0)2/T 2

∑T
t,s=k0+1 W̃t,s

def
= B.

where W̃t,s := E[xitx
′
isc

2
i ]. So E

[∑k0

t,s=1(xit − xi)(xis − xi)′uituis

]
= A1σ

2
ε + B. We follow the

same procedure to find the limit of the other three submatrices in (7), which gives us

E
[∑k0

t=1

∑T
s=k0+1(xit − xi)(xis − xi)′uituis

]
= −B; E

[∑T
t=k0+1

∑k0

s=1(xit − xi)(xis − xi)′uituis

]
= −B;

E
[∑T

t,s=k0+1(xit − xi)(xis − xi)′uituis

]
= A2σ

2
ε + B.
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where A2 = (T−k0)Q−T−1
∑T

t=k0+1

∑T
s=1 Ωt,s−T−1

∑T
t=k0+1

∑T
s=1 Ωs,t+T−2(T−k0)

∑T
t=1

∑T
s=1 Ωt,s.

Therefore, W xu = σ2
ε




A1 0

0 A2



 +




B −B

−B B



 . Under the condition Ωs,t = Ω∗ for t 6= s,

imposed in Section 5.4, A1 can be simplified to C1 = k0(1 − T−1)(Q − Ω∗), and A2 to C2 =

(T − k0)(1 − T−1)(Q − Ω∗). Furthermore,

Ω2 =




C1 0

0 C2



 ,⇒ VIV = σ2
ε




C1 0

0 C2





−1

+




C−1

1 BC−1
1 −C−1

1 BC−1
2

−C−1
2 BC−1

1 C−1
2 BC−1

2



 .

Finally, we compute VFFE = Ω−1
3 W̃xεΩ

−1
3 . Using the simplifying conditions in Section 5.4,

Ω3 =




k0(1 − T−1)Q − k0(k0 − 1)T−1Ω∗ −k0(T − k0)T−1Ω∗

−k0(T − k0)T−1Ω∗ (T − k0)(1 − T−1)Q − (T − k0)(T − k0 − 1)T−1Ω∗





=




k0(1 − T−1)(Q − Ω∗) + k0(T − k0)T−1Ω∗ −k0(T − k0)T−1Ω∗

−k0(T − k0)T−1Ω∗ (T − k0)(1 − T−1)(Q − Ω∗) + k0(T − k0)T−1Ω∗





=




C1 0

0 C2



+




D −D

−D D



 , where D = k0(T − k0)T−1Ω∗.

Thus, VFFE = σ2
ε








C1 0

0 C2



+




D −D

−D D









−1

.

Weak Law of Large Numbers

Let zi be a q×1 zero-mean vector that is independent over i. If for some ξ > 0, supi∈N E|zi|1+ξ <

∞, then N−1
∑N

i=1 zi
p
→ 0.

Central Limit Theorem

Let zi be a q × 1 zero-mean vector that is independent over i. Also let E[ziz
′
i] = Ωi, a q × q

positive definite matrix, and Ω = limN→∞ N−1
∑N

i=1 Ωi. If for some ξ > 0, supi∈N E|zi|2+ξ < ∞,

then N−1/2
∑N

i=1 zi
d
→ N (0,Ω).
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