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Abstract

We study worst-case fairness of a TU-cooperative game, the stable
imputation that is most dissimilar to a normative standard of fair-
ness. Motivated by welfare economics, similarity is quantified using
information-theoretic divergences. Worst-case fairness aims to parallel
the spirit of the price of anarchy from noncooperative game theory in
a cooperative setting, quantifying how much deviation from fairness
is compatible with coalitional rationality.

Computing our measure is tractable in weighted voting games
and many classes of coalitional skill games, but NP-hard in induced-
subgraph games and a class of task-count coalitional skill games. In
these latter cases we investigate the performance of several approx-
imation algorithms, showing that they yield constant approximately
optimal solutions. We also upper bound the performance of a Reverse
Greedy algorithm on general convex games in terms of two game-
specific constants.
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1 Introduction

Stability and fairness are two central issues in cooperative game theory. Many
of the various solutions proposed emphasize one or the other aspect: the core
is a prototypical example of a stability-oriented approach, while the Shapley
value [33] is the classical, well-understood approach to fairness.

Of these two requirements stability is usually the much less demanding
requirement: As long as one can guarantee (perhaps as a result of exogenous
interventions such as subsidies [6] or taxation [41] ) that stable imputations
exist, to guarantee that such a solution will eventually be chosen one only
needs to assume some form of individual or coalitional rationality. In con-
trast, imposing a normative solution (such as the Shapley value) requires a
number of presuppositions:

(a). that the given solution is easy to compute (a statement that is not
always true [21]).

(b). that it is the determinate outcome of a (centralized) noncoopera-
tive negotiation mechanism, an assumption that is often problematic in a
distributed multiagent setting lacking such a regulating mechanism.

(c). that it was not subject to strategic behavior such as manipulation
[5, 42], nor was it affected by systemic issues such as agent failures [8, 7].

(d). that the coalition formation process did not preclude itself (as it
may be in the case of successively enlarging coalitions) the adoption of such
a solution.

(e). and, finally, that no prior social norms exist in the agent population
that favor alternative outcomes [27].

The above objections are, of course, not specific to the Shapley value,
and the aim of the previous discussion was suggesting a replacement by any
alternative concept: it simply may be the case that no normative approach
is appropriate in all circumstances. Assuming stability requires us, however,
to confront the issue of solution multiplicity.

In noncooperative game theory the seminal work on the price of anarchy
(PoA) [29, 35, 34, 36] provides a powerful alternative to equilibrium selec-
tion. Instead of advocating any particular refinement of Nash equilibrium,
the price of anarchy measure takes a pessimistic perspective, quantifying the
degradation in overall performance due to uncoordinated behavior, measured
on the worst equilibrium. This circumvents the problem of equilibrium se-
lection by providing (pessimistic) guarantees valid for any rational solution.

In this paper we propose an approach with a similar philosophy for TU-
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cooperative games. It is fairness in allocations, rather than total coalition
payoff that is solution-dependent in this setting. Rather than attempting
to postulate any particular “fair cost division”, we investigate the departure
from fairness of an arbitrary “rational” cost allocation (where in this paper
we define rationality as membership in the core). We measure departure from
fairness by employing a parametric family of measures based on variations on
the concept of Rényi entropy, fruitfully used before as measures of inequality
in welfare economics [19].

The structure of the paper is as follows: in Section 2 we discuss related
work. In Section 3 we overview some relevant concepts in cooperative game
theory, information theory and combinatorial optimization. We then intro-
duce in Section 4 our parametric family of measures of fairness. In Section
5 we discuss the computational complexity of computing worst-case-fairness,
highlighting both tractable and NP-hard cases. In Section 6 we present a
general approach for obtaining approximately worst-case fair solutions in a
convex game, via a “reverse greedy” algorithm whose performance depends
on two game-specific constants. We then particularize our discussion to the
class of induced subgraph games of Deng and Papadimitriou [21].

2 Related work

We are, of course, inspired by the significant amount of work on the price
of anarchy [29, 35, 34, 36, 17]. This line of work has inspired a number of
related indices that quantify various aspects of noncooperative games. We
cite just one such example, the work of Anshelevich et al. [2] on the price of
stability, that considers the best, rather than the worst Nash equilibrium.

Still in a noncooperative setting, some concepts in the literature address
issues related to cooperation, bringing them closer to the scope of the present
work. Examples include coalition-proof Nash equilibria [10],[11] or the price
of strong anarchy [1], which restricts the analysis of system behavior to Nash
equilibria resilient to deviations by coalitions, as well as the price of collusion
[26], which measures the inefficiency of the worst possible partition of the set
of players. Perhaps the most relevant for this work is the notion of Price of
Democracy introduced by Chalkiadakis et al. [15]. They attempt (just as
we do) to provide a PoA-like measure for cooperative games. However, their
setting is different: they explicitly model payoff allocation as a bargaining
process (game) and consider the loss in performance in the coalitions arising
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from subgame perfect equilibria of this game.
Finally, the study of non-cooperative justifications of cooperative game

theory concepts is obviously related. We refer the reader to Section 7.1.2 of
[16] for a brief outlook.

In contrast to all these results in non-cooperative game theory, our frame-
work makes minimal assumptions with respect to coalition formation and
payoff division. Cooperation is not an issue in the examples we discuss: all
players are interested in joining the grand coalition (though our framework
could be extended to the case of multiple coalitions as well), and no ineffi-
ciency arises. What may arise, though, is inequality in payoff division.

3 Preliminaries and Notation

All logarithms considered in this paper are base two. We will work in the
framework of Cooperative Game Theory (for a recent survey from an algo-
rithmic perspective see [16]). We assume knowledge of basic concepts from
this literature. We also assume basic knowledge of computational complexity
[4] and approximation algorithms [40].

A TU-cooperative game is a pair Γ = (N, v), where N is a set of players
(usually N = [n] := {1, 2, . . . , n} for some n ≥ 1) and v : P(N) → R+

is a value function. We will assume that v is monotone nonnegative, i.e.
v(∅) = 0, [A ⊆ B]⇒ [v(A) ≤ u(B)]. Game Γ is convex if the value function
v is supermodular, that is it satisfies v(A∪B) + v(A∩B) ≥ v(A) + v(B) for
all A,B ⊆ N . When the sign of the inequality is reversed function v is called
submodular and the corresponding game is called concave.

An imputation is the value received by a coalition of players, if the payoff
vector is xS = (xS1 , xS2 , · · · , xSk

), then x(S) =
∑

i∈S xi such that x(N) =
v(N). Imputation x is blocked by coalition S ⊆ N if

∑
i∈S xi < v(S). The core

of game Γ is the set of all imputations that are not blocked by any coalition.
A solution concept q [3] is a function that assigns to every cooperative game
Γ an imputation q(Γ). It is a core concept if q(Γ) ∈ core(Γ) for every game
Γ such that core(Γ) 6= ∅. Basic examples of solution concepts will be U , the

uniform vector U(i) = v(N)
|N | for all i ∈ N, as well as the Shapley value Sh and

the nucleolus Nu [16]. In concave games the core is the convex hull of the
marginal vectors xπ, π ∈ Sn and the Shapley value is the barycenter of this
polyhedron.

We compute our measures on three classes of games:
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(a) weighted voting games (WVG[24]). A WVG is specified by a set of
n ≥ 1 players, a corresponding set of nonegative player weights w1, w2, . . . , wn
adding up to 1, and a threshold T . Coalition S ⊆ [n] is winning (v(S) = 1)
if
∑

i∈S wi ≥ T and losing (v(S) = 0) otherwise. Player i is a veto player if
all winning coalitions must include i.

(b). coalitional skill games (CSG[9]). A CSG is specified by a set of
agents, N = {1, . . . , n} , a set of skills S = {s1, . . . , sk}, a set of tasks
T = {t1, . . . , tm} and a task value function u : P(T )→ R+. We assume that
u is monotone nonnegative, i.e. u(∅) = 0, [T1 ⊆ T2]⇒ [u(T1) ≤ u(T2)].

Each agent i has a set of skills Si ⊆ S. Each task tj requires a set of
skills Stj ⊆ S. For C ⊆ N , S(C) = ∪j∈CSj is the set of skills of coalition C.
Coalition C can perform task tj if Stj ⊆ S(C) . The set of tasks coalition C
can perform will be denoted by T (C). The value function v(C) is defined as
v(C) = u(T (C)).

In a single task CSG (STSG) T = {S} hence v(C) = 1 if S(C) = S, 0
otherwise. Γ is a task-count CSG (TCSG) if u(T ′) = |T ′| and a task-count
CSG with threshold (TCSG-T) if there exists a threshold k such that u(T ′) =
1 if |T ′| ≥ k, 0 otherwise. In a weighted task-count CSG with threshold
(TCSG-T) the tasks are weighted by some system of nonnegative weights
w1, . . . wm and the definition of u is changed to u(T ′) = 1 if

∑
l∈T ′ wl ≥ k, 0

otherwise.
(c). induced subgraph games (IS-G [21, 38, 16]). An IS-game is speci-

fied by a connected loopless graph G = (V,E) and a set of integer weights
(wi,j)(i,j)∈E on the edges. Vertices of G are interpreted as players. Given set
S ⊆ V , the value of coalition S is v(S) =

∑
(i,j)∈E,i,j∈S wi,j. We will assume

that weights are nonnegative and for any vertex v ∈ V, the sum of weights
of its adjacent edges is positive.

One can normalize every vector of nonnegative values X to a probability
distribution. Without risk of confusion we will denote by X the resulting
distribution as well. Given discrete random variable X with probability
mass function p = (pi)i and real number λ > 0, λ 6= 1 the Rényi entropy
of order λ of X is defined [18] as: Hλ(X) = 1

1−λ log
(∑

i p
λ
i

)
. We complete

this definition for λ = 1 by the usual Shannon entropy H(X) = H1(X) =
−
∑

i pi log pi. Let P = (pi) and Q = (qi) be two distributions and λ > 0.
The Rényi divergence of order λ of P and Q is defined as Dλ(P ‖ Q) =
1

λ−1 log
(∑

i p
λ
i q

1−λ
i

)
. The discrete Rényi relative entropy of order λ of P,Q is

defined as hλ[P,Q] = 1
1−λ log

(∑
i q
λ−1
i pi

)
+ 1

λ
log
(∑

i q
λ
i

)
− 1

λ(1−λ) log
(∑

i p
λ
i

)
.
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It satisfies the discrete Gibbs inequality:

Lemma 1. We have hλ[P,Q] ≥ 0.

Lemma 1 is the discrete version of a result from [30]. Its proof will be
given in the full version.

We complete the two definitions above in the special case λ = 1 by the
relative Shannon entropy or Kullback-Leibler divergence, defined as: D(P ‖
Q) = h1[P,Q] =

∑
i pi log pi

qi
.

Though they do not generally yield metrics, entropy and divergence mea-
sures have a significant history (e.g. [39]) of use, in particular as indicators
of ”similarity” or ”distance” between two probability distributions. A par-
ticularly important application of such information-theoretic tools is in the
area of inequality measurement [37, 19]. This is what motivates the use of
Rényi divergences as objective function to maximize in our measure, that we
define next.

4 Worst-case fairness

of a TU-cooperative game

We now define the main object of interest, a parametric family of measures
of fairness for cost allocations of a TU-cooperative game Γ = (N, v). They
are parameterized by

(a). a positive real λ.
(b). A set St(Γ) of solutions deemed ”stable”. In all examples considered

in this paper St(Γ) = Core(Γ).

(c). a solution concept q, yielding vector q(Γ) ∈ R
|N |
+ . Intuitively vector

q(Γ) represents a baseline ”standard of fairness” to which all other possible
imputations are held. Our measures attempt to evaluate the largest possible
discrepancy between a stable imputation u ∈ St(Γ) and q(Γ).

These considerations finally enable us to give the definition of worst-case
fairness: Given cooperative game Γ = (N, v) and real number λ > 0 the
λ-worst-case fairness of game Γ with respect to (St, q) is defined as

OPTλ(Γ, St, q) = sup{Dλ(x||q(Γ)) : x ∈ St(Γ)}. (1)

Generally we will not be content with only computing the optimal value
in equation (1), but instead also seek to compute (if possible) a vector W (Γ)
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that realizes equality
Dλ(W (Γ)||q(Γ)) = OPTλ(Γ, St, q). Such a W (Γ) will be called a λ-worst-
case fair imputation of Γ.

The definition in equation (1) obviously depends on the choice of q.
Several special cases make sense:

(a). strictly egalitarian worst-case fairness: q(Γ) is the uniform vector
U . Though somewhat controversial since it requires a very strong form of
equality, the study of this measure makes sense at least from a mechanism
design point of view: To give just one example, in the case of convex/concave
games, particularly interesting examples of imputations in the core arise from
group-strategyproof mechanisms or, equivalently, cross-monotonic sharing
schemes (see [31] and Chapter 15 of [32]). Requiring cross-monotonicity
yields a “plausible notion of equity” [28]. A natural question related to the
previous quote is how large a variation in payoffs is compatible with the use of
cross-monotonic schemes. The strictly egalitarian WCF offers a pessimistic
estimate of this amount.

(b). marginalist worst-case fairness: in this case q is (the probability
distribution obtained from) the Shapley value.

(c). lexicographic worst-case fairness: q is (the probability distribution
obtained from) the nucleolus of the game.

(d). egalitarian worst-case fairness: in this case q corresponds to the
egalitarian solution of Dutta and Ray [23]. We will not study this measure
in the present paper.

Worst case fairness is obviously easy to compute when (i). The baseline
concept q(Γ) is tractable. (ii). a witness W (G) is easily computable. We
will limit ourselves in this paper to instances where condition (i). holds, so
that the (in)tractability of computing the worst-case fairness is not due to
the intractability of the baseline concept.

Example 1. Consider the IS-game Γ with three players presented in Fig-
ure 1(a). The total payoff to be shared between players is 12 = 2+4+6. The
core of Γ is given in Figure 1(b). The Shapley value is [21] Sh = (3; 4; 5).
Furthermore, by simple symbolic computations one can show the following:
(a). There are 57 integral imputations in the core. Of these six are extremal
(i.e. corners of the polyhedron geometrically describing the core). (b). For
λ = 1 there are two WCF imputations in the core for the strictly egalitarian
WCF: (2; 0; 10) and (0; 2; 10). Worst-case fairness is OPT1(Γ, U) ∼ 0.934.
(c). Also for λ = 1 there exists an unique WCF imputation for the marginal-
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A B

C

2

4 6

core(G) :


x+ y + z = 12
x+ y ≥ 2
x+ z ≥ 4
y + z ≥ 6
x, y, z ≥ 0.

Figure 1: (a) An IS game with three players; (b) Its core.

ist WCF : X = (4; 8; 0). The corresponding WCF is OPT1(Γ, Sh) ∼ 0.805.
Thus employing perfect equality as our standard of fairness of imputations
in the core is (in this game) more pessimistic than using the Shapley value.

5 The computational complexity

of worst-case fairness

In this section we study the computational complexity of computing the WCF
of a TU-game. For technical reasons (Rényi entropy is only concave for λ ≤ 1)
our intractability results will be stated under the condition 0 < λ ≤ 1. On
the other hand all positive results (including those related to approximate
solutions) deal with the general case λ > 0.

First we provide two settings where computing the WCF is tractable,
that of weighted voting games and the one of coalitional skill games.

Theorem 1. Let Γ = ([n], {wi}i∈[n]) be a weighted voting game with nonempty
core. Without loss of generality assume that players 1, 2, . . . K are all the veto
players (to have a nonempty core necessarily K ≥ 1).

Then for every λ > 0 vector P = (1, 0, . . . , 0) is a WCF-imputation for
the (strictly egalitarian/lexicographic) λ-worst case fairness in Γ.

Theorem 2. Let Γ = (I, S, T, u) be a STSG (TCSG-T,WTSG-T) game with
nonempty core. Without loss of generality assume that players 1, 2, . . . K are
all the veto players (to have a nonempty core necessarily K ≥ 1). Then for
every λ > 0 vector P = (1, 0, . . . , 0) is a WCF-imputation for the strictly
egalitarian λ-worst case fairness in Γ.

Moreover, if Γ is a TCSG-T game then the same conclusion holds for the
lexicographic worst-case fairness of Γ.
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Proof. The two theorems above have a common proof, based on the similar
characterization of the core of weighted voting games [24] and coalitional skill
games [9]: an imputation x = (x1, x2, . . . , xn) is in the core if it distributes
zero value to every non-veto player. That is

x1 + x2 + . . .+ xK = 1 and xK+1 = . . . = xN = 0.

On the other hand, for WVG and TCSG-T games the nucleolus of Γ is the
vector Nu(Gamma) = ( 1

K
, . . . , 1

K
, 0, . . . , 0).

As for all vectors x in the core xi = 0 for nonveto players i, and since
vectors U,Nu(G) are constant on their restriction to veto players, maximiz-
ing divergences Dλ(x||U), and Dλ(x||Nu) respectively, is easily seen to be
equivalent to minimizing the entropy of the distribution of payoffs restricted
to veto players x = (x1, x2, . . . , xk). Obviously, vector P is one way to ac-
complish this task.

The case of TCSG-games is rather different: while of the three target
concepts U, Sh,Nu only U is clearly tractable (Sh is ]P-complete and the
complexity of Nu is open [9]), computing even the strictly egalitarian WCF
is NP-hard:

Theorem 3. For any 0 < λ ≤ 1 the following decision problems is NP-hard:
Given a TSCG game Γ and a constant η > 0, does there exist any imputation
x ∈ core(Γ) with Dλ(x, U) ≥ η ?

Proof. Consider the following subclass of TCSG games: a pure skill CSG
game (PCSG) is a TCSG game for which T = S. We will show that the
problem above remains NP-hard even for PCSG games.

Indeed, every PCSG game Γ is easily seen to be concave1. An imputation
of Γ may (fractionally) divide each skill among players who posess it. By
stochastic domination, to maximize Dλ(X||U) (i.e. minimize Entλ(X) (=
log(n)−Dλ(X||U)) one only needs to consider integral divisions (each skill is
assigned to a player). This is essentially the problem Minimum Entropy Set
Cover (MESC [25]). Problem MESC is NP-hard (the general case 0 < λ ≤ 1
is dealt with essentially in [12]).

Finally, in IS-games the nucleolus is equal to the Shapley value, the latter
one being easily computable [21]. Computing worst-case fairness in IS games,
both strictly egalitarian and marginalist, is computationally intractable:

1this is not true for general TCSG games
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Theorem 4. For any 0 < λ ≤ 1 the following decision problems are NP-
hard:

(a). Given an IS-game Γ = (G,w) with nonnegative weights and constant
η > 0, does there exist any imputation x ∈ core(Γ) with Dλ(x, U) ≥ η ?

(b). Given an IS-game Γ = (G,w) with nonnegative weights and constant
η > 0, does there exist any imputation x ∈ core(Γ) with Dλ(x, Sh) ≥
η ?

Note that we have framed our intractability results above in terms of gen-
eral real-valued constants λ, η. With only additional notational inconvenience
we can make all these constants rational: the set of potentially optimal so-
lutions to all instances of the games we have considered above is finite and
the objective values ”well-spaced”.

6 Approximation algorithms

Given Theorem 4, we need to give up (at least in IS-games) the hope of
computing efficiently computing WCF-imputations, and instead resort to
approximation algorithms, that will provide approximately worst-case fair
imputations. Unlike most cases in the theory of approximation algorithms
[40], but similar to other problems in entropy minimization [14], our approx-
imation guarantees will be additive: given constant ∆ > 0, an imputation X
will be ∆-approximately worst-case fair if

Dλ(X||q(Γ)) ≥ OPTλ(Γ, St, q)−∆

and we will try to find imputations minimizing ∆.
It is customary when dealing with approximation in submodular opti-

mization to employ the GREEDY algorithm, that enlarges the coalition by
selecting the individual with the largest marginal increase of the value func-
tion v.

For instance in PCSG-games, taking into account the connection with
MESC from the proof of Theorem 3, a relatively straightforward adaptation
of the argument in [12] (for 0 < λ ≤ 1), or as an application of results in
Section 7 to the dual of the game (this argument works for all λ > 0) yields
the following result (proved in the full version of the paper):
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Theorem 5. Let λ > 0 and Γ be a PCSG-game. Then the GREEDY al-
gorithm produces a 1

λ−1 log(λ)-approximately worst-case-fair imputation for
the strictly egalitarian WCF in Γ. The approximation guarantee is optimal
unless P=NP.

On the other hand, for games (such as IS-games) that are supermodu-
lar, using the GREEDY algorithm doesn’t quite make sense: assigning the
first element i its payoff v({i}) does not take into account the fact that the
contribution of player i increases with the coalition, being largest for the
coalition N \ {i}. In other words v({i}) ≤ v(N)− v(N \ {i}), and, to create
an imbalanced allocation we should assign player i its utopia payoff (that is
the right-hand quantity, rather than the left-hand). This leads to considering
the Reverse Greedy algorithm displayed below.

Reverse Greedy:

INPUT : A game Γ = (N, v)
y := (0, 0, . . . , 0)
A0 := N , r:=1
While ∃e ∈ Ar−1 with v(Ar−1)− v(Ar−1 \ {e}) > 0

choose ir ∈ Ar−1 that maximizes
v(Ar−1)− v(Ar−1 \ {ir})
(breaking ties arbitrarily)
yir := v(Ar−1)− v(Ar−1 \ {ir})
Ar := Ar−1 \ {ir}, r + +

OUTPUT : Imputation Y = (yi)i∈N .

Figure 2: Algorithm Reverse Greedy.

Example 2. Consider the setting of Example 1. Algorithm Reverse Greedy
computes one of the covers (0; 2; 10) or (2; 0; 10) (optimal for strictly egal-
itarian WCF). The computed imputation depends on the tie-breaking rule
between the first two nodes. Indeed, the algorithm first selects node C, allo-
cating its utopia value 4 + 6 = 10. Then it selects one of A and B in an
arbitrary order.

For IS-games we will consider an alternate approximation rule: we will
call an imputation BI biased if for every edge (i, j) ∈ E it distributes all
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the weight wi,j to one of the nodes i, j, when w(i) 6= w(j) to the the node
among i, j with larger value of w(·). Clearly, a biased imputation is easy to
compute.

Example 3. In the setting of Examples 1, 2, imputation (0; 2; 10) is the only
biased imputation.

7 Algorithm Reverse Greedy in arbitrary con-

cave games

Our main result yields an upper bound on the performance of Algorithm
Reverse Greedy in approximating the strictly egalitarian worst-case fairness
in an arbitrary convex TU-game. This easily yields (via Lemma 2 below) a
weaker additive guarantee for any solution concept (we will take this route
in the next section)

To describe our guarantees we introduce some notation:

1. We will denote by l the number of iterations of the Reverse Greedy
algorithm.

2. For 1 ≤ r ≤ l denote by ir the element chosen at stage r of the
algorithm. Let Wr = {i1, . . . , ir}, Ar = U \Wr and ∆r be the value of
element yir set at stage r.

We next define a quantity, the ”impact of j on ir”, that will play a
fundamental role in our results below: For any 1 ≤ r ≤ l we define the
impact of j on ir by

ajr = [v(Ar−1)− v(Ar)]− [v(Ar−1 \ {j})− v(Ar \ {j})] . (2)

Proposition 1. For any 1 ≤ r ≤ l and 1 ≤ j ≤ m we have ajr ≥ 0.

Proof. Note that Ar−1 = Ar ∪ {ir}. Thus when j = ir or ir 6= j 6∈ Ar−1 the
second term is zero, and the result follows directly from the monotonicity of
function v. Assume now that ir 6= j ∈ Ar−1, thus j ∈ Ar. Define S = Ar
and T = Ar−1 \ {j}. Then S ∪ T = Ar−1, S ∩ T = Ar \ {j}, and we employ
the supermodularity of function v.
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Given an optimal solution X = (Xj), we will break it down into a large
number of components Zj

r ∈ Z, 0 ≤ Zj
r ≤ ajr as in equation (3) below:

Xj =
l∑

r=1

Zj
r ,∀j ∈ [m] (3)

Intuitively Zj
r is the part of the optimal solution Xj that can be assigned

to cover “set ir”. This explains the newly introduced constants: first, one
cannot allocate more than the total of Xj. Second, one cannot allocate to
any “set ir” more than “its intersection with Xj”.

Definition 1. Given concave game Γ Let α = α(Γ) the smallest and β =
β(Γ) the largest positive value such that for some cover X in the core mini-
mizing Fairλ(Γ), one can define quantities Zj

r , so that for any r ∈ [l]:

β ·∆r ≤
m∑
j=1

Zj
r ≤ α ·∆r. (4)

Proposition 2. For any convex game Γ we have

β(Γ) ≤ 1 ≤ α(Γ).

Proof. We prove first inequality, the second is similar.
Sum equations (4) for r = 1, . . . , l. The left-hand side is β(Γ)

∑l
r=1 ∆r =

β(Γ)f(N), by ReverseGreedy.

Similarly, the right-hand side is
∑l

r=1

(∑m
j=1 Z

j
r

)
=∑m

j=1

(∑l
r=1 Z

j
r

)
=
∑m

j=1Xj = f(N). The result follows.

Our main result gives an upper bound applicable to all convex cooperative
games:

Theorem 6. Given a convex cooperative game Γ the Reverse Greedy algo-
rithm produces a cover RG satisfying

0 < λ < 1⇒ Hλ(RG) ≤ Hλ(OPT ) +
1

λ− 1
log(βλ). (5)

λ > 1⇒ Hλ(RG) ≤ Hλ(OPT ) +
1

λ− 1
log(αλ). (6)
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Corollary 1. The cover RG produced by the ReverseGreedy algorithm is
1

λ−1 log(βλ)-approximately WCF with respect to U for 0 < λ < 1 and 1
λ−1 log(αλ)–

approximately WCF with respect to U for λ > 1

Proof. Follows directly from Theorem 6.

Observation 1. By Proposition 2 both constants in the upper bounds of The-
orem 6 are nonnegative. On the other hand, if at least one of parameters α
or β are equal to 1 then we can complete the result to the case λ = 1 by taking
the limit λ→ 1, yielding the conclusion that RG is log(e)-approximately fair
with respect to U for λ = 1.

A more limited connection between divergence and entropy holds even in
the general case. Given distribution R = (ri), denote rmax = max{rj : j ∈
supp(R)}, rmin = min{rj : j ∈ supp(R)} and define ν(R) = log

(
rmax

rmin

)
, the

nonuniformity of distribution R.

Lemma 2. Let P,Q,R be probability distributions and λ > 0. Then |Dλ(P ||R)−
Dλ(Q||R)− (Hλ(Q)−Hλ(P ))| ≤ ν(R).

The proof of Lemma 2 is deferred to the full version. We will apply it to
IS-games below.

8 Approximate Worst-case fairness

of Induced Subgraph Games

In this section we first particularize our main result to the class of IS-games:
we show that for any such game α = β = 1. On the other hand we study
the performance of using biased imputations, showing that in some cases (for
λ ∼ 1) the guarantee is better than the one available for the ReverseGreedy
algorithm:

Theorem 7. Given IS game Γ = (G,w) and λ > 0

(a). α(Γ) = β(Γ) = 1.

(b). Any biased imputation BI satisfies

Hλ(Sh)−Hλ(OPT ) ≤ 1

λ
[Hλ(Sh)−Hλ(BI)] + 1. (7)
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Corollary 2. In the setting of the previous result RG is 1
λ−1 log(λ)-approximately

worst-case fair with respect to U and 1
λ−1 log(λ) + ν(Sh)-worst case fair with

respect to Sh.
On the other hand BI satisfies

Dλ(BI ‖ Sh) ≥ λ ·OPTλ(Γ, Sh)− (1 + λ) · ν(Sh)− λ (8)

Proof. Directly from Theorem 7 and Lemma 2.

For marginalist worst-case fairness the second bound may be slightly bet-
ter when λ ≈ 1 and ν(Sh) ≈ 0 . Indeed, in the limit λ→ 1 term 1

λ−1 log(λ)
tends to log(e) ≈ 1.442 . . ., while λ ≈ 1. The best of the two guarantees may
depend on the precise value of constant λ (and, of course, other features of
the instance at hand).

9 Delayed Proofs

9.1 Proof sketch of Theorem 4

For reasons of space the proof of this result is only outlined. A complete
argument is deferred to the full version.

The first ingredient of our proof is the characterization of imputations
Z = (z1, z2, . . . , zn) in the core of an IS game:

Proposition 3. z is in the core of Γ if and only if there exist real numbers
ri,j are real numbers in the range 0 ≤ ri,j ≤ 1 with ri,j + rj,i = 1 so that

zi =
∑

(i,j)∈E

ri,jw(i,j) (9)

This claim is an easy consequence of the characterization of the core of
IS games [21], and a special case of a more general paradigm [20].

Lemma 3. Let X = (xi)i be an optimal imputation in game Γ. Consider a
reordering σ of the set of vertices so that xσ(1) ≥ xσ(2) ≥ · · · ≥ xσ(n). Then
coefficients rk,l from formula (9) satisfy: rσ(i),σ(j) = 1, if i < j, 0 otherwise,
for all i, j ∈ V.
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Figure 3: The gadget in [9] and our reductions.

Proof. Consider an arbitrary edge (k, l) ∈ E, k = σ(i), l = σ(j). Assume
that i < j (the opposite case is easily handled via relation rk,l + rl,k = 1) and
rk,l < 1. Define for notational convenience 0 < ε < 1 by ε = rl,k = 1 − rk,l.
With this choice further define X̃ = (x̃1, . . . , x̃k, . . . , x̃l, . . . , x̃n) where x̃k =
xk + εwk,l, x̃l = xl− εwk,l, and x̃r = xr for all other r 6= k, l. Note that x̃ and
x differ just on components k, l. By the previous remark x̃ is an imputation
in the core.

It is easy to see that for all λ > 0 we have Hλ(X) > Hλ(X̃), which
contradicts the hypothesis that X had the lowest Rényi entropy.

Another way to state Lemma 3 is that any imputation of minimal entropy
corresponds to ”orienting” the weighted edge (i, j) towards one of the nodes,
that is assigning one of the nodes the entire weight wi,j.

The proof of the two parts of Theorem 4 are fairly similar, and mirror
the NP-hardness proof (given in [13]) of a problem called minimum entropy
orientation (MINEO).

(a). By Lemma 3 our problem is equivalent (in the sene of having the
same optimum, though the set of feasible solutions may vary) to a weighted
version of MINEO.

The reduction in [13] encodes an instance Φ of an NP-complete variant
of problem 1-in-3 SAT into a graph G = (V,E). Formula Φ (corresponding
to a set cover problem) has ([13]) q ≥ 1 variables u1, u2, . . . , uq and an equal
number of clauses. Each variable occurs in exactly 3 clauses of Φ, each clause
has length exactly 3. Graph G is constructed as the union of q ”gadgets”
(each having six vertices as displayed in Figure 3 - see [13]) and q extra nodes.
It has m = 12q edges.
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We may read the existence of a satisfying assignment for Φ from the value

of a minimum entropy orientation
−→
H :

Lemma 4. The Shannon entropy of the distribution corresponding to an ar-

bitrary orientation
−→
H of G is at least

1
m

(4q log(m/4) + 7q log(m/3) + q log(m)) with equality (reached for some ori-

entation
−→
G explicitly constructed in [13]) if and only if instance Φ is satisfi-

able.

The proof of Theorem 4 (a) is a direct extension to the case λ > 0 of
the above result. We replace the Shannon entropy by the Rényi entropy, i.e.
log(n) minus the the quantity we attempt to maximize, the divergence with
the uniform distribution U . Instead of Claim 2 in [13] we use the following
extension to all values λ > 0, with essentially the same proof as the original
version:

Lemma 5. For any λ > 0, λ 6= 1, the Rényi entropy of the distribution

corresponding to orientation
−→
G (constructed in [13]) is at most log(m) +

1
1−λ log

(
4λ + 7 · 3λ−1 + 1

)
/12, with equality if and only if instance Φ is sat-

isfiable.

(b). For simplicity we outline here the case λ = 1. As in (a) there is no
problem extending it to a general λ > 0.

We employ the same reduction from [13] of 1-in-3 SAT to an instance of
the decision problem in Theorem 4 (b): given instance Φ we construct graph
G and explicit constant µ0 such that for every orientation in G Dλ(H,Sh) ≤
µ0. Equality can be reached if and only if formula is satisfiable.

What changes is the proof of the correctness of the reduction. The nature
of the Shapley value forces this: Constructed graph G has two types of
nodes, those having degree three and those having degree four. Deng and
Papadimitriou [21] proved that the Shapley value of an IS-game is s(i) =
1
2

∑
i 6=j wi,j. Thus, in the unweighted IS-game on G the Shapley node i has

Shapley value s(i) = 3
2

if its degree is three and s(i) = 2 if the degree is four.
The following simple lemma shows how to orient edges in an arbitrary

orientation in order to maximize divergence with the distribution Sh = (si),
where si = s(i)/m.

Lemma 6. Consider an orientation H in graph G and let A,D be (Figure 4)
two connected nodes, one having degree four, the other degree 3. Let a, d be

17



D A

Figure 4: An edge between vertices with different degrees.

the indegrees of nodes A,D not including edge AD. Then if a > d, to
maximize the Kullback-Leibler divergence of H with Sh, edge AD should be
oriented towards A. Otherwise it should be oriented towards D.

The next step of the construction in [13] (Claim 1 in that paper) was to de-
termine the shape of a minimum entropy (maximum divergence) orientation
in graph G on a six-vertex gadget X. Our proof employs a similar lemma.
However, since in any gadget X the outside node has degree four and the
”interior nodes” have degree three, we need to be more precise, and identify
in the maximum divergence configuration the degrees of the interior nodes
in X and those of the exterior nodes. We defer a precise statement/proof of
our analog of Claim 1 to the final version. The proof is not difficult (it uses
Lemma 6) but rather long and computational/cumbersome.

An outcome of the analysis of is the following: in any orientation H
maximizing D(H,Sh) the outdegree of nodes A,B,C in every copy X of
the gadget is either one or two. Let t be the number of gadgets with in-
degree 1 (the rest of them, q − t having indegree two). The corresponding
local configurations of maximal divergence have the form O = (4, 1, 0), I =
(0, 3, 2), if indeg(X) = 1, and O = (4, 3, 0), I = (0, 1, 3), if indeg(X) = 2.

Finally, Theorem 4 (b). follows from the following

Claim 1. The Kullback-Leibler divergence KL(
−→
G ||Sh) between any orien-

tation
−→
G and Sh, the probability distribution corresponding to the Shapley

value is at most q
m

(
9 + 2 log 3

2

)
, with equality if and only if instance Φ is

satisfiable.

To prove the claim and the theorem we consider the orientation H max-
imizing D(H,Sh) and note that the contribution of non-gadget nodes to
D(H,Sh) is entropy-like (Sh is constant on non-gadget nodes, as all of them
have degree three). The sum of degrees of these nodes is q+t(= (q−t)+2 ·t).
By stochastic domination we maximize D(H,Sh) by making as many degree
three nodes as possible (i.e. b q+t

3
c nodes). Finally, to obtain the orientation
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of maximal divergence we maximize the ”optimal divergence” over t. This
happens for t = 0. That is, just as in the corresponding result in [13], every
copy of the gadget has outdegree 1 and the outgoing edges have to give in-
degree three to corresponding non-gadget nodes. This is only possible when
formula Φ is satisfiable .

9.2 Proof of Theorem 6

Denote by OPT = (Xj)j∈[n] and RG = (yi)i∈[n] the optimal solution, respec-
tively the one generated by the Reverse Greedy algorithm.

For 1 ≤ r ≤ l we will use the shorthand U r
j = Xj−

∑r
k=1 Z

j
k and U0

j = Xj.
For any fixed j, sequence (U r

j ) is decreasing with r. On the other hand

U r−1
j − U r

j = Zj
r .

By the greedy choice we infer yir = ∆r with yi = 0 for other values of i.
Starting from A0 = N we have:

∆r ≥ f(Ar−1)− f(Ar−1 \ {j}) = f(N)− [f(N)− f(Ar−1)]+

+ [f(N \ {j})− f(Ar−1 \ {j})]− f(N \ {j}) = f(N)−

−
r−1∑
k=1

[f(Ak−1)− f(Ak)] +
r−1∑
k=1

[f(Ak−1 \ {j})− f(Ak \ {j})]−

− f(N \ {j}) ≥ f(N)− f(N \ {j})−
r−1∑
k=1

ajk ≥ Xj −
r−1∑
k=1

ajk.

At the last step we used inequality Xj ≤ f(N)−f(N \{j}), which follows
from core membership (in)equalities∑

k∈N\{j}Xk ≥ f(N \ {j}) and
∑

k∈N Xk = f(N).
Case λ > 1:
First we use inequality

∑m
j=1 Z

j
r ≤ α ·∆r as follows:

α
l∑

r=1

(∆r)
λ =

l∑
r=1

(α∆r)(∆r)
λ−1 ≥

l∑
r=1

(
m∑
j=1

Zj
r

)
∆λ−1
r
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Applying the lower bound above on ∆r we get:

l∑
r=1

m∑
j=1

Zj
r∆

λ−1
r ≥

l∑
r=1

m∑
j=1

Zj
r

(
Xj −

r−1∑
k=1

Zj
k

)λ−1

=

m∑
j=1

[
l∑

r=1

Zj
r (U

r−1
j )λ−1

]
=

m∑
j=1

l∑
r=1

Zj
r (U

r−1
j )λ−1 =

=
m∑
j=1

l∑
r=1

(U r
j − U r−1

j )(U r−1
j )λ−1(∗)

We transform the difference into a sum of ones. As xλ−1 is increasing and
U0
j = Xj we can lower bound (*) by:

m∑
j=1

l∑
r=1

Ur−1
j∑

k=Ur
j +1

(U r−1
j )λ−1 ≥

m∑
j=1

l∑
r=1

Ur−1
j∑

k=Ur
j +1

kλ−1 =
m∑
j=1

Xj∑
k=1

kλ−1

Putting things together, using standard calculus:

α
l∑

r=1

(∆r)
λ ≥

m∑
j=1

 Xj∑
k=1

kλ−1

 ≥ m∑
j=1

Xλ
j

λ
=

1

λ

m∑
j=1

Xλ
j

Taking the logarithm and dividing by 1− λ < 0 yields:

1

1− λ
log

(
l∑

r=1

∆λ
r

)
≤ 1

1− λ
log

(
m∑
j=1

Xλ
j

)
− 1

1− λ
log(αλ)

or, equivalently, by the definition of Rényi entropy:

Hλ(RG) ≤ Hλ(OPT ) +
1

λ− 1
log(αλ)

The proof is similar in the case 0 < λ < 1. We use instead the definition
of β. Also the standard calculus inequality changes its direction.
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9.3 Proof of Theorem 7 (a)

We first reinterpret the result of Lemma 3 as follows: any optimal solution
X = (xi)i corresponds to some ordering σ of the vertices such that

xi =
∑

(i,j)∈E
σ−1(i)<σ−1(j)

w(i,j).

Lemma 7. Given any IS game (G,w) we have

ajr =


wir,j, if ir 6= j, (ir, j) ∈ E, j ∈ Ar
∆r, if ir = j
0, otherwise,

(10)

where ∆r is the value computed by the algorithm Reverse Greedy at stage r.

Proof. A simple application of formulas defining coefficient ajr: in IS-games
for any set S ⊆ V , v(S) =

∑
e∈S×S we. Therefore v(Ar−1)− v(Ar) is the sum

of weights we of edges e between ir and a node in Ar. On the other hand
the value of expression v(Ar−1 \ {j})− v(Ar \ {j}) depends on j: It is zero if
ir = j, v(Ar−1)− v(Ar) when j 6= ir and j /∈ Ar, otherwise, it is equal to the
sum of weights we of edges e between ir and a node in Ar \ {j}. In particular
this is v(Ar−1)− v(Ar) when j is not adjacent to ir.

Lemma 8. For all IS games Γ = (G,w) one can construct a system of
parameters (Zj

r ) from Equation (3), witnessing equality α(Γ) = β(Γ) = 1.

Proof. Lemma 7 allows us to define system of coefficients (Zj
r ) s.t. for all r,∑

j Z
j
r = ∆r. Together with Definition (1) and Proposition (2) this witnesses

the fact that α(Γ) = β(Γ) = 1.
In the construction we will regard OPT and RG as edge orientations in

the weighted graph (G,w). Note that ∆r is the sum of weights of all edges
oriented towards ir in RG. Intuitively we redistribute this amount among
coefficients Zj

r with 1 ≤ j ≤ m by comparing orientations OPT and RG.
Edges are considered in the order given by Reverse Greedy:

• Start with Zj
r = 0 for all r and j.

• Run algorithm Reverse Greedy that constructs orientation RG, updat-
ing coefficients during the algorithm:
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• At each stage r: after choice of vertex ir we consider edges (ir, j)
oriented by Reverse Greedy towards ir. There are two possibilities:

1. (ir, j) is oriented towards ir in both RG and OPT. We set Zir
r =

Zir
r + wir,j.

2. (ir, j) is oriented differently in OPT and RG. We let Zj
r = wir,j(=

ajr) for such edges.

Note that the total weight assigned at stage r is ∆r(= airr according to
Lemma 7).

Hence inequality 0 ≤ Zj
r ≤ ajr is true for j = ir too.

This completes the proof of Theorem 7 (a).

9.4 Proof of Theorem 7 (b)

Proof. Let
−→
G be an orientation of G = (V, E) of minimal Rényi entropy.

Denote by OPT = (qi)i the indegree distribution qi = v(i)
W
, where v(i) is the

sum of weights of all edges oriented in
−→
G towards vertex i ∈ V, and W is the

sum of all edge weights.
The Rényi entropy of OPT expands as follows:

Hλ(OPT ) =
1

1− λ
log
∑
i∈V

qλi =
1

1− λ
log
∑
i∈V

v(i)

W

[
v(i)

W

]λ−1
=

1

1− λ
log

∑
(i,j)∈

−→
G

wi,j
W

[
v(i)

W

]λ−1

Since xλ−1 is decreasing for 0 ≤ λ < 1 we infer

Hλ(OPT ) ≥ 1

1− λ
log

∑
(i,j)∈

−→
G

wi,j
W

[
max{v(i), v(j)}

W

]λ−1
The inequality is true for any λ > 1 as well, as xλ−1 is now increasing but

we multiply with negative constant 1
1−λ .
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Let G[ be a biased orientation. Thus
vG[(i) =

∑
(i,j)∈E,v(i)>v(j)wi,j

Let BI = (q[i)i be its indegree distribution. By the definition of biasedness
we have:

Hλ(OPT ) ≥ 1

1− λ
log

∑
(i,j)∈E

wi,j
W

[
max{v(i), v(j)}

W

]λ−1
=

=
1

1− λ
log

∑
(i,j)∈G[

wi,j
W

[
v(i)

W

]λ−1
=

=
1

1− λ
log
∑
i∈V

vG[(i)

W

[
v(i)

W

]λ−1
=

1

1− λ
log
∑
i∈V

q[i

[
v(i)

W

]λ−1
The Shapley value of an IS-game is [21] s(i) = 1

2

∑
i 6=j wi,j. Thus, the

Shapley distribution Sh = (si)i of such a game is si = s(i)
W

. HenceHλ(OPT ) ≥
1

1− λ
log
∑
i∈V

q[i

[
2W · si
W

]λ−1
=

1

1− λ
log
∑
i∈V

q[i (si)
λ−1 − 1

The difference between entropies of the optimal and Shapley distribution
can be written as follows:

Hλ(OPT )−Hλ(Sh) ≥ 1

1− λ
log
∑
i∈V

q[is
λ−1
i − 1−

− 1

1− λ
log
∑
i∈V

sλi =
[ 1

1− λ
log
∑
i∈V

q[i (si)
λ−1 +

+
1

λ
log
∑
i∈V

sλi −
1

λ(1− λ)
log
∑
i∈V

(
q[i
)λ ]

+
1

λ(1− λ)
log
∑
i∈V

(
q[i
)λ − 1

λ(1− λ)
log
∑
i∈V

sλi − 1

= hλ[BI, Sh] +
1

λ
Hλ(BI)− 1

λ
Hλ(Sh)− 1

Applying the discrete Gibbs Lemma we infer

Hλ(Sh)−Hλ(OPT ) ≤ 1

λ
(Hλ(Sh)−Hλ(BI)) + 1.

completing the proof.
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Conclusions

The main contribution of this paper was to propose a parametric family of
measures of worst-case fairness in cooperative settings. It raises many open
questions, e.g. (a). obtain tight upper bounds for approximating strictly
egalitarian, marginalistic and other WCF measures in IS games (b). obtain
approximation guarantees for (general) TCSG games. (c). study WCF in
other settings, e.g. NTU games such as coalitional resource games [22], or in
the context of multiple coalitions. (d). study tradeoffs between fairness and
other features of cooperative games.
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